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ABSTRACT

This thesis studies a new data weighting function, which consists of a

complex valued window known as the linear complex valued FM chirp window.

This type of window, when used with the Fourier transform, produces a

magnitude spectrum which permits identification of single sinusoids and multiple

sinusoids which can be separated in frequency by less than one DFT bin. This

allows determination of whether or not one or multiple signals are present. The

chirp window seems to have better resolution properties than classical windows.

When the chirp window is used with a signal that contains a frequency step (i.e.,

FSK), the resultant spectrum is markedly different for the upward shift and

downward shift cases. The work of this thesis consists of replicating the results

of J. Griffiths in his paper "A Novel Window For High Resolution Fourier

Transform" to establish the signal to noise ratio dependency of this type of

window, and to study its behavior when damped sinusoids are present.

Additionally, a review of classical windows and sidelobe behavior is presented.

All simulations where performed using MATLAB.
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I. INTRODUCTION

The general problem of spectral analysis is that of determining the spectral

content of a random process based on a finite set of observations from that

process. A variety of parametric and non-parametric techniques have been

developed. Because of the relative ease with which Fourier spectra can be

computed and the fact that the resulting spectral estimate (which is the magnitude

squared of the transform) is directly proportional to the power of sinusoidal

processes, the Fourier based non-parametric technique is a valued and widely

used tool in spectrum analysis. This estimate is called the periodogram.

In many practical cases data consists of sinusoidal signals embedded in

white Gaussian noise, and in such cases it may be advantageous to apply a data

w.,induw to the signal before computing the periodogram. Without data

windowing, a lower level signal may be masked by the sidelobes of a higher level

signal, provided that the signals are close in frequency. Windows can be used as

weighting functions applied to data to reduce the spectral leakage associated with

finite observation interval, or in other words, data windowing will reduce the

magnitude of the periodogram at frequencies not near the signal frequency. This

reduction is made at expense of increasing the bandwidth of the main lobe of the

spectral estimates.



Generally, the traditional windows used in spectral analysis (rectangular,

Hamming, Blackman, Kaiser, etc.) are positive, real valued, symmetric functions.

One draw back of windows is their influence on theability to detect spectral lines

that are separated in frequency by an amount which is small compared to the

spectral width of a single spectral component. The mairn objective of this thesis is

to study a new data window in conjunction with the Fourier transform approach.

This window possesses "high resolution" capabilities. The window to be studied

is the complex linear FM chirp window presented by L. J. Griffiths [Reference 1].

Chapter Ilis a short review of spectral estimation. The classical method of

spectral estimation, the periodogram, is analyzed in detail. Deterministic signals

and wide-sense stationary stochastic processes are examined. Due to the

random nature of the signal in the last case, the mean and the variance of the

periodogram are important issues that need to be addressed.

In Chapter III the main traditional windows, presented by F. J. Harris

[Reference 2], will be developed by considering the method used by A. H. Nuttall

[Reference 3] in analyzing the sidelobe behavior of windows. The performance of

these windows in detecting a weak spectral line in the presence of a strong

nearby line will be examined. If additive white Gaussian noise (AWGN) is

present, the smaller signal will many times not be detected. A simulation using a

signal composed of two equal amplitude sinusoids, not centered at bin

frequencies, will be given.
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Chapter IV will examine the results obtained by L. Griffiths [Reference 1]

using the high resolution window which consists of a complex linear FM chirp.

For high signal to noise ratios averaging is not necessary. The Fourier based

spectral estimate is used for a single complex valued sinusoid and for two

complex valued sinusoids. The results obtained are then compared with those

found using a traditional raised-cosine window. Also, an example to illustrate the

effect of the frequency chirp window on frequency shift keyed (FSK) signals is

presented. Finally, the validity of this window is examined when the data consists

of complex valued damped sinusoidal signals, and in addition the signal to noise

ratio (SNR) dependency of this window is established.

Chapter V is devoted to conclusions and recommendations concerning th_

use of nontraditional windows in spectral analysis.

3



II. SPECTRAL ESTIMATION

A. BACKGROUND

The main objective of spectral estimation is to determine the spectral

content of a random process from a finite set of observations. The Power

Spectral Density (PSD) of the sampled sequence is defined by:

Ps(f) = Y Rxx(k)exp(-j271f kTs) (1)

where Ts is the interval between successive samples. This requires that the

autocorreiation function R. (k) is known for all values of k. In most practical

cases, these values are not available. Instead, only N samples of the random

signal x(t) may be available, and from this limited data set the PSD must be

estimated. It is necessary to find a method of estimating P,(f) which permits the

use of a finite data set. A question that has to be posed is whether or not this

estimate is "consistent."

To determine consistency it is necessary to introduce some definitions such

as bias, variance and frequency resolution. Given that N data samples are

available, xn = x(nTs) where n = 0,1 .............. N-1, and that an estimate of a given

quantity Y is desired. Y could be the mean of the signal, its autocorrelation, its

4



PSD, or some other quantity of interest. The estimate of Y is denoted by the

function

S= g(xO , X1  .............. . . . . . . . . . . . ,XN-1). (2)

Because xo, x1 ,..., XN-1 are random variables, Y is also a random quantity
with probability density function (PDF) f(YJY). In order to obtain a consistent

estimator, it is necessary to choose g(x0,x1 ,..... XN_1 ) such that its PDF is centered

on the true v. e of Y, and has as small a variance as possible. Conversely, a

poor estimator will have a probability density with a large variance and/or will not

be centered on the true value of Y. These concepts are illustrated in Figure 2.1.

The "bias" b of an estimator is defined by the difference between its true

value Y and the conditional average of its estimatorY. Therefore,

b = Y - E[•'/Y] (3)

where, from [Ref. 41,

E[Y] fg(xO ........ XN-)f(xO ...... XN-1/Y)dxo ..... dXN-1 (4)

where g(x 0 ..... , XN.1) = X 0 X X2 ,, XN.-. An "unbiased" estimator is one for which

b = 0.

The "variance" of estimator Y relates to the width of the conditional

probability density function f(Y/Y) and is defined by

2 = E[(y/y)2]_ (E[•Iy]) 2  (5)

5



where E[(Ytt)] is the conditional expectation of Y, as defined above, and E[1

/y) 2] is calculated by

E[(YY)2] = J .f[g(xO ........ XN-)] 2 f(x.XN-1/Y)dxo ..... dxN._ .(6)

An estimator is called "consistent" if both its bias and variance approach

zero as the number of samples becomes large. Another concept of interest,

"frequency resolution" will be introduced in the next section.

In this thesis, the only kind of estimator that will be considered is the

nonparametric spectral estimation tool known as the periodogram.

B. PERIODOGRAM FOR DETERMINISTIC SIGNALS

The periodogram is one of the methods of classical spectral estimation, and

is defined as the squared magnitude of the Discrete Fourier Transform (DFT)

performed directly on the data set [Ref. 5]. Because the method of computation

is relatively easy and fast when using the Fast Fourier Transform (FFT), the

periodogram is the most popular estimator.

To develop a general formula to compute the periodogram, consider first the

case of a "deterministic" analog signal x(t), that is a continuous function of time. If

x(t) is absolutely integrable, then the signal energy , is finite and given by

= -Ix(t)12 dt < o (7)

6



The Fourier transform of x(t) exists, and is given by

X(f ) = r x(t)exp(-j2nf t)dt, (8)

while the squared modulus of the Fourier transform is often called the spectrum

S(f) of x(t), where

S(f) = IX(f)1 2. (9)

Parseval's energy theorem relates energy by

f-= Ix(t)12dt = fr Ix(f)I 2df= fS(f)df, (10)

which means that the energy of the time domain signal is equal to the energy of

the frequency domain transform. Therefore, S(f) is an Energy Spectral Density

(ESD); in other words, it represents the distribution of energy as a function of

frequency.

7



f( y'ly)

OGWD ESTIMATOW

POOR ESTIMATOR

Figure 2.1. Conditional Probability Density Function For Good And Bad Estimator
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To obtain a discrete sequence, x(t) has to be sampled at regular intervals T,,

which results in

Xn = x(nT5 ) for -- o < n < oo (11)

The sampled sequence xn can be represented as the product of x(t) and an

infinite set of equal spaced delta functions, as in

Xn = F, x(t)S(t -nTs). (12)

n=--m

Taking the Fourier transform of x n leads to

X (f) r , x(t)8(t - nTs)Ts exp(-j2nft)dt, (13)

(The factor T, ensures conservation of integrated area between Equation (8) and

Equation (13) [Ref. 5].)

hence

X (f) = F, xnexp(-j2nfnTs). (14)
n=-oo

X'(f) and X(f) will be identical in value over the interval ---L < f <•, as

long as x(t) is band limited. Thus, the ESD is

S'(f): X,(f) =S(f). (15)

9



In order to define a Discrete Fourier Transform (DFT), it is necessary to

consider the following conditions:

* The data sequence is available from a finite time "window" that is n = 0 to n

= N-i;

* The transform is discretized for N values by taking samples at frequencies

f = mAf where Af =•L and m = 0, 1 ..... N- 1. The DFT is defined as
NT,

N-I
Xm = Ts E xnexp(-j2nmAfnTs) (16)

n=o

where Af = -L hence
NT,

N-1
Xm = Ts YZ xnexp(-j2nmn/N) , for m = 0,1 ...... , N - 1. (17)

n--O

* The inverse DFT is given by

N-1
Xn = Af F Xmexpoj2nmn/N) , for n = 0,1 ......... N - 1, (18)

m=O

therefore the discrete Energy Spectral Density may be defined as

Sm=lXm12  (19)

where Xm is the DFT of x, for 0 < m < N-1;

* For a deterministic signal x(t), both the discrete SM, and the continuous S'(f)

have been called periodogram spectral estimates.

10



C. PERIODOGRAM FOR STOCHASTIC PROCESSES

A different point of view must be taken when x(t) is Wide Sense Stationary

(WSS) stochastic process rather than deterministic, finite energy signal. In this

case the parameter of interest is the power (time average of energy) density as a

function of the energy becomes very large, i.e., 4-+oo. The autocorrelation

function of a stationary random process is given by

Rxx(T) = E[x*(t + T)x(t)] (20)

where E is the expectation operator. This expression provides the basis for

spectrum analysis, rather than x(t) itself. The PSD of a random process x(t) is

defined as the Fourier transform of R(-r)

Px(f) = F[Rxx(T)], (21)

or

Px(f) = j= Rxx(T)exp(-j27rfT)d-t. (22)

Usually, the autocorrelation function R,(r) is unknown, thus the assumption

that the random process x(t) is ergodic has to be made in order to permit the

substitution of time averages for ensemble averages. Under this assumption

Rxx(T) may be expressed as

Rxx(r) = lim -L P-T x(t + r)x'(t)dt (23)

11



and it is possible to show that P,(f) may be expressed as [Ref. 5]

Px(f) = lim E[ F-fTT x(t)exp(-j2nft)dtl 2]. (24)
T-*oo

In the last expression it is important to note the presence of the expectation

operator since, due to the ergodic property of R,,(T) , the limit T-+oo in P,(f) without

the expected value does not converge in any statistical sense.

If Px(f) is sampled for values n = 0,1 ......... N - 1, then

P'(f) = lim L Ts° xexp(-j2nfnTs), for - -< (25)

Too 2T, 2T

Note that the expectation factor has been ignored, which can cause statistically

inconsistent results (i.e., the variance of spectral estimate does not decrease

even if longer sequences are used). The Fast Fourier Transform (FFT) is used to

evaluate P,(f). In fact if f,,, = mAf (equally spaced frequencies for m - 0,1 ...........

N-1) with Af = J-, then
NT,'

"AI N -i -j2 xm n 1 2
Ps(fm) =Pm = W-lTs Z xnexp( N )l (26)

'I n-=OI

By definition, the DFT (hence FFT) of xn is given by

N-1 -j2xmn (27)
Xm = Ts E xnexp( -N),

n--O

and therefore

Pm = Pper(m) = 1 lXmI 2  (28)

12



Replacing the value of Xm, the formula for the periodogram is obtained by

1 ' ,I - . . -j2 x m n l ) 2
Pper(m) = NE-1" XneXp( (29)

n=O N"

This last expression may be efficiently computed using the FFT.

It is important to note that the periodogram has some limitations, such as:

* The frequency resolution Af is limited by the length of the data record toAf =

WT.
NTs '

* Because the DFT can be written as the convolution of the true Fourier

transform with the Fourier transform of a rectangular window, there is a limited

ability (due to leakage), to detect weak peaks in the presence of strong peaks.

* Random data can produce other difficulties because the periodogram is not

a consistent estimator, as is shown in Section 2.3.1 and 2.3.2.

1. Bias of the Periodogram

The bias of the estimator PM can be determined by computing its mean

value and then comparing it with the true power spectral density.

If x(t) is a WSS process, then the PSD of the sampled sequence x, is

given by

Ps(f) = Z Rxx(k)exp(-j27kfTs). (30)k=-00

The periodogram can be written as

A 1 N-1 12
Pper(f) = I Xnexp(-j2fnT) (31)

13



where

f= - form=O,l ....... N-1. (32)

The ensemble average of Pp(f) using

R..(n - m)= E(nxnm]

is expressed

E 0,4 N)] Rxx(n - m)exp(-j2n(n - M)fT.). (33)
Nn=O m=0

For an arbitrary function g(k), it can be shown that

N-1 N-1 N-1I. Z g(n -m)= E (N -Jkl)g(k), (34)
n=O mr=O k=-(N-1)

hence

E[P pe(t)] = k=_NNIE1)1- 1 ) Rx(k)exp(-j2nkfT,) (35)

If Equation 35 is compared with Equation 30, it is seen, for knot equal to
A

0, that the results are not equal, and therefore the estimatePpr(f) is biased. The

bias of this estimator is defined as the difference between the true PSD and the

mean value of the estimator (i.e., if both are equal then the estimator is

unbiased). The last equation can also be written as

14



E[1per(f] = Z w(k)Rxx(k)exp(-j2nkfT,) (36)k=--M

where w(k) is the triangular window given by

_ k I

w(k)=( 1 - W for IkI<N-1 (37)
S0 elsewhere

The periodogram windows the autocorrelation with a triangular window.

This corresponds to the convolution of the Fourier transform of the two functions.

Thus, Equation 36 can be written in terms of W(f), the Fourier transform

of w(k) and the Fourier transform of Rjk) which according to Equation 30 is the

true PSD P,(f). Therefore

E[Pp.,(f)J = fj- P.(f )WN(f-- f )df , (38)

where

1(sin7tf N 2

WN(f) = N( si-t-f ) . (39)

From Equation 38 it can be seen that the Periodogram average is

equivalent to viewing the true spectrum through the spectral window WN(f).

Because WN(f) becomes more and more sharply peaked about f = 0 as N-+00, it

is evident from Equation 38 that although the periodogram is biased, it is

15



asymptotically unbiased. In other words, if enough data is available, that isN-*co

then

lim E[Ppr(f)] -+ PA(f). (40)
N--*oo

Hence, the mean converges to the true PSD. It is also evident from Equation 38

that the resolution of the periodogram is determined by the spectral width of WN(f)

which is approximately Af = -L, where T, is the interval between successive

samples and N is the number of samples.

2. Variance of the Periodogram

The variance of the periodogram is given by

Var(Oprm(f)) = Cov(Pper (f), per(f)) (41)

where the covariance is defined by

Cov(Pper(f1), Pper(f 2)) = E[ Pper(f )Pper(f 2)] - E[ Pper(f 1)]E[ Pper(f 2)]. (42)

Assuming white Gaussian noise of spectral height P(f), the covariance becomes

sin N It (f0+ f2 )T s 
2  + (sin N It (f1-f 2)T1 ] (21

Cov( Pper(fl), Pper(f2)) =P.LNsini(f'+f2)Ts) Nsin7c(f-t2)Ts _(4

For fl = f2 = f this becomes

Var(Pper (f) )2 1 f NT- ) 2 (44)

Nsin 2 7tl fTs,

16



If N--,oo , then

Var(lpr(f)) = (Psm)) (45)

It is important to note that the variance is a "constant" independent of N,

or as N-coo the variance does not approach to zero. Therefore the periodogram is

not a consistent estimator. The standard deviation (square root of the variance)

is as large as the mean (the quantity to be estimated).

The fact that the variance of the periodogram does not decrease with

increasing data record length may be attributed to the lack of an expectation

operator in the definition of P(f). The periodogram can be enhanced to make it a

consistent estimator. To reduce the variance, at expense of frequency resolution,

a number of periodograms can be averaged.

D. PERIODOGRAM AVERAGING

The data record x; ,xj . . . . . . XN.A can be divided into K segments, each

consisting of M samples (i.e., N = KM). This means there are K subrecords,

given by

"* Subrecord 1 x0, x1,. ....... . . . . . . . . . . . . ..... xM.,

"* Subrecord 2 xM. x÷K+ ............. x2M.,

"* Subrecord 3 x2M, x2M+1 ........... x 3M.1
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* Subrecord K X(K1l• X(K.+l . ........ XN.A.

For each of these records, the periodogram is computed as

(k+1 A1 12
"Pper(f, k)1 Xnexp(-j2nnfTs) for k = 0,1.... K - 1. (46)Pperf, k)= I n=kM.....

The average of these periodograms is given by

1K-1 ^

Iavper(f) I K "o Pper(f; k) (47)

or

= 1 e (+1±=Iz M Xnexp(-j2irnfTs) (48)
P avperf) = -=0 n=kM I

It is important to note that because the length of each data record is now M,

the frequency resolution has been reduced by a factor ofK, from

1 1

Af = L to Af = --L (recall that N = KM).

Therefore, whatever improvement found in the variance is traded off against a

loss in resolution.

To determine whether this averaged periodogram is consistent, its bias and

variance have to be computed. The mean value of the average periodogram will

be the same as the mean value of the periodogram based on any of the individual
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data sets. Since the periodogram for each data set is identically distributed and

the data are assumed to be statistically independent as well as stationary

E[Pavpr,(f) = K1 SIE[Pper(f; k+ E[Ppr(f; 0)] (49)

or

E[Pavper(f)] = llM1' X2ex-nf .
=E[I • m ___oxnexp(-j2T•nfT,)j]. (50)

Using Equation 35 and Equation 38 with N replaced by M

E[Pavper(f) = i2 ) (1-) Rxx(k)exp(-j27xkfT-) (51)k---(M- 1)

hence

E[Pavper(f)] P='W~ -f)f (52)

where

WM(f) (sn it M fr) 2 (53)

Comparing E[Pavper(f)] in Equation 52 with the true PSD in Equation 30, it is

clear that this estimator is "biased". Furthermore, becauseM _ N the resolution is

poorer (i.e.: Af = M-- ) than the one obtained using all of the data. Although

resolution is lost, the advantage using the averaged periodogram is evident when

its variance is computed. The variance of the averaged periodogram is
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= 2.Var(P[ 1)+ sin 2xMfr 2](4

Var(Pavper(ff) =K r, = K(ps(f))2[1 + Mn in2,f" (54)

or

Var(Ipavper(f) - l(Ps(f))2 . (55)

The variance has been reduced by a factor of K below that of the unaveraged

periodogram.

Periodogram averaging allows reduction of the variance of the estimate at

the expense of frequency resolution. The value of K must be chosen in such a

way as to obtain an desirable reduction in variance at an acceptable frequency

resolution.

Finally, a technique known as the 'Welch Method" will be mentioned. This

technique consists of windowing each data segment (4, xj,... . . . . XM.I) with a

non-rectangular window before forming the periodogram (i.e., Xn is replaced by

wnx,, where w, is the window weighting). The advantages of this technique are

the same as discussed in the context of straight periodogram averaging. For

instance, if triangular windows with 50% overlap are used, the frequency

resolution is poorer by a to:Cor of 1.42 due to the windows, but the variance is

improved by a factor of 1.77 [Ref. 41 due to the overlap.
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III. CLASSICAL WINDOWS

A. INTRODUCTION

Generally, a signal x(t) can exist in the entire interval (-oo,oo), but this signal

is often corrupted by noise. From the point of view of spectral analysis, the

detection and estimation of the signal necessitates that it be of finite length, in

other words, every observed signal that has to be processed must be of finite

length. Considerations of spectral analysis include:

"* Detectability of tones in the presence of nearby strong spectral components.

"* Resolvability of similar strength nearby spectral components.

Spectral analysis data involves two basic operations: sampling and

windowing. It is necessary to define the observation interval (NTJ) (sec.), where,

N is the number of uniformly spaced samples of the observed signal and T, is the

time interval between samples.

The selection of a finite time interval (NTJ) leads to an interesting peculiarity

of spectral analysis: If the record length NT, is selected in such way that it is not

an integer multiple of the period of the signal, a discontinuity will be introduced by

truncating the signal. This produces the undesired effect known as "leakage", the

non-zero projection of smeared frequency components.
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Windows can be defined as weighting functions applied to data in order to

reduce the spectral leakage associated with finite observation interval.

Essentially, the window function is applied to data to reduce the order of the

discontinuity at the boundary of the periodic extension.

The requirements of real-world machine processing also dictate that the

data set be of finite extent. As an example, the pair x(nT,) (the sampled signal)

and X,(f) (the Fourier transform of x(nTJ)), is not suited for numerical

computation. This is so because the number of samples x(nTJ) of x(t) is not

finite, and because X8(f), or the Fourier transform of the sampled data, is

continuous rather than discrete, where

Xf M-) (56)XS(f X( =T.)-

Appendix A contains the derivation of the above equation.

It is therefore necessary to limit the sequence x(nTJ) to a finite number of

samples and sample Xs(f) at some appropriate location, in order to obtain the

discrete function

X(m) = X,(f = M) where m = integer and To = record length.

The objective is to get the discrete pair x(nTJ) and X(m), for a good

approximation to the continuous Fourier transform pair x(t), X(f).
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B. WINDOWING A DISCRETE SIGNAL

If x(nTj) is the sampled version of the signal and w(nTj) is the sampled

window function, then the Fourier transform of the windowed sampled data signal

is given by

N-1

Gs(f) = 2: g(nTs)exp(-j27tfnTs) (57)
11=0

where g(nT,) is the windowed sampled signal defined as

g(nTs) = x(nT=) w(nT5), then

N-1

Gs(f) = Y x(nTs)w(nTs)exp(-j27fnTs) (58)
n=o

where

w(nTs) = 0, for n >_ N and n < 0 (59)

and N = number of uniformly spaced samples of the observed signal.

The effects of the window in the spectral estimate are shown by the

interpretation of the Equation 58. This equation shows that the transform G,(f) is

the transform of a product, and because multiplication in the time domain
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corresponds to the convolution of the two corresponding transforms in the

frequency domain, it follows that

Gs(f) = X(f )W(f -f')df (60)

or

G.(f) = X(f) * W(f). (61)

This last equation is the key to the effects of processing finite length data,

since it represents the sum of all of the spectral contributions to each f weighted

by the window centered at f' and measured at f [Ref. 5].

The samples of the Fourier transform Gs(f) of the windowed sampled signal,

can be related to the discrete Fourier transform if the sampling rate is at f = -To

Therefore,

N-I

G(m) = Gs(f = M) = Y g(nTs)exp(-j27rnmT/'To) for m = 0,1,..., N-1. (62)n=O

The record length is defined as To= NT,. The discrete Fourier transform

pair is obtained as

N-I
G(m) = 1 g(nTs)exp(-j21cnn/N), (63)

n=O

and the inverse discrete Fourier transform is defined by
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N-1

g(n) =•1 F, G(m)exp(j2nmn/N). (64)
rn=0

At this point is important to emphasize the following points:

"* Both G(m) and g(n) are periodic.

" The values of G(m) for 0O_ m• N correspond to the positive frequencies of

X(f).

* If T. is chosen in accordance with the sampling theorem, and T. = NT, is

sufficiently large, (i.e., to improve Af = -) then for 0 _ m _ N - 1 le discrete

transform G,(f) is a good approximation to the samples X(f) of the continuous

transform.

C. CLASSICAL WINDOWS

Classic windows are weighting functions, generally of the form of a raised

cosine, used in spectral analysis to reduce spectral leakage. In past years,

several classical windows have been developed [Ref. 2]. In this chapter a

reconstruction of these main traditional windows will be made, along with a

comparative study of the performance of these windows in the detection of a

weak spectral line in the presence of a strong nearby line.

A brief definition of the principal parameters used when comparing windows

performance is provided below.
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* The equivalent noise bandwidth measures the bandwidth of the window.

The objective is to minimize the bandwidth of the window in order to eliminate

the noise in the passband region of the signal.

* Processing Gain (PG) is defined as the ratio of output signal-to-noise ratio

to input signal-to-noise ratio (i.e., PG - sO) A detailed approach to PG is

given in Appendix B.

* The highest side lobe level is the measure of the highest peak sidelobe

relative to the main lobe, and is an indicator of how well a window suppresses

the leakage effect. A window should exhibit low sidelobes away from the main

lobe to reduce the effects produced by spectral leakage.

# The scalloping loss is defined as the ratio of coherent gain for a tone

located half a bin from a DFT sample point to the coherent gain for a tone

located at a DFT sample point, and is related to minimum detectable signal.

Two important concepts are here introduced: Coherent gain, defined as the

sum of the window term w(nT,), or the DC signal gain of the window (i.e.,

coherent gain = Yw(nTs)); and a bin that is defined as the fundamental
n

f=

frequency resolution (i.e., bin where f, is the sampling frequency and N is

the number of samples).

- The worst case processing loss measures the reduction of the output

signal to noise ratio as a result of windowing and of worst case frequency

location, and is defined as the sum of maximum scalloping loss of a window
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and of processing loss due to that window. It is an important parameter since it

allows for maximizing the detectability of tones.

* The minimum resolution bandwidth ( 3.0 dB bandwidth) is related to the

mirnimum separation between two equal strength spectral lines such that their

respective main iobes can be resolved. The criterion for this resolution is the 3

dB bandwidth of the window and means that two equal strength main lobes

separated in frequency by less than their 3 dB bandwidths will not be resolved

easily as two distinct spectral lines.

* The 6 dB bandwidth defines the resolution of the windowed DFT. The DFT

output points are the linear addition of the spectral components weighted

through the window at a given frequency, therefore the sum at the crossover

point of the kernels must be smaller than the individual peaks if the two peaks

are to be resolved. This means that at the crossover point the gain from each

kernel must be less than 0.5 or the crossover point must occur beyond the 6

dB points of the window.

Of all the above mentioned parameters, the most important is the sidelobe

level, since it allows for reduction of the bias produced by leakage. Therefore, an

analysis of the sidelobe behavior of the windows following the approach

presented by H. Nuttall is considered next. The relationships obtained will be

used in analyzing the performance of windows [Ref. 3]. The windows of interest

are of the form
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K

w(t) = X0E akcos(2nkt/L) for Itl < L (65)
Lk=O -

where K is an integer, (i.e., K + 1 is the number of terms in the window equation),

ak is a real constant, and L is the duration of the window. The Fourier transform

of w(t) is given by

W(f) J•• 2 w(t)exp(-j2ncft)dt (66)

where the window w(t) is a continuous function of time, and possesses a'1 orders

of derivatives for Itl -< L. However, discontinuities in w(t) or its derivatives occur at
t = +±L These discontinuities dictate the asymptotic behavior of W(f). The

window w(t) is normalized according to

K

E ak =1 (67)
k=O

K

w(O) = ak = . (68)Lk=O L

it is also observed that

K
WW+ = lim w(t)= E (_l)kak. (69)

ItI--+U2- k=O

This last equation may or may not be equal to zero. 'VJith non-zero values,

w(t) is discontinuous at t = +L and W(f) will decay at 1/f (he-.;e, 6 dB roll off per-2
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octave). At a value of zero w(t) is continuous for all t. Also w(t) is continuous for

all t since

K

w'(t) = F- , kaksin(27Ekt/L) (70)
k=O

and

lim w'(t) = 0. (71)
Itl -*L/2

However, w"(t) may not be continuous at t - ±LU2 because

K 2

w"(t) =P F,_ k2akcos(27ckt/L) (72)
k=0

and

K

lim w3(t- 4 _2 (1)kk 2ak. (73)
L3 k=O

This last equation may or may not be equal to zero. If it is not zero, then

w"(t) is discontinuous at t = ±UL2 and W(f) will decay at 1/f3 (hence, 18 dB roll off

per octave). However if it is zero, then w"(t) is continuous for all t, and it follows

that w"'(t) is also continuous for all t, then W(f) decays at least as fast as 1/f5

[Ref. 3].
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D. COMPARISON OF CLASSICAL WINDOWS

Next the most important classic windows (i.e., rectangular, triangular,

Hamming, Blackman and Kaiser windows) will be constructed, and their sidelobe

behavior compared. The other significant parameters will be identified following

those presented by F. J. Harris [Ref. 2]. The Fourier based spectral estimate of

the window was obtained from the magnitude of the Fourier transform by

N-I 2

W(m) Y. w(n)exp (-j27tnm/N)= (74)
n=OI

In the simulation the window length is fixed at 51, while the FFT is taken at a size

of 1024 (i.e., zero pad to 1024). Also, we will use normalized coordinates, and

the resultant sequence will be shifted so that the left end point coincides with the

origin. The sample period Ts= 1 allows to have a bin with a width of 1/N.

1. Rectangular Window

This window is unity over the observation interval [Ref. 7]. The window

for a DFT is defined as

w(n) = 1 for n = 0,1 ......... , N - 1 (75)

The spectral window is given by
[_ •t _ )O sinNo)

W(O) = exp[-j(N-1) 2) (76)
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where

0 = 27T and T, =1.

As shown in Figure 3.1, the magnitude squared transform of this window

is seen to be a sinc function, which has a DFT main lobe of two bins and a first

sidelobe level approximately 13 dB down from the main lobe peak (which agrees

with Harris [Ref. 2]). Since for this window there is only one coefficient non-zero,

the window decays at only 6 dB/octave, which is the expected rate for a function

with a discontinuity.
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Figure 3.1. Rectangular Window.

2. Triangular Window

This window is defined as

4'

w(n) = -L for n = 0, 1 ........... N/2 (77)

w(n) = w(N - n) for n = N/2, ........... I N - 1 .[Ref. 81 (78)
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The transform of a triangular window is given by

W 2O = exNI-il'!- 1)0I[!!1!12 (79)
2

This means that the transform of the window is the digital sinc2 function.

Figure 3.2 shows the windows and the magnitude squared transform. The main

lobe width is twice that of the rectangular window transform, and the sidelobe

level (approximately 26 dB down from the main lobe peak) is twice as low as that

of a rectangular window transform.

Because this window has a discontinuity in the first derivative, the

sidelobes fall off at -12 dB/octave.
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Figure 3.2. Triangular Window.
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3. Hamming Window

This window is given by [Ref. 8]

w(n)=O.54-O.46cos (Ln) for n = 0,1 .................... , N- 1 (80)

The magnitude squared transform of this window is shown in Figure 3.3,

and indicates that a marked improvement in the sidelobe level is realized. For

this window the sidelobe level is seen to be approximately 43 dB lower than the

main lobe peak. However, a broadening of the width of the main lobe should also

be noted.

Because Equation 69 does not equal zero for the coefficients of

Hamming window, this window has an asymptotic decay of 6 dB/octave.
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Figure 3.3. Hamming Window.
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4. Blackman window

The equation for this window has three non-zero coefficients and was

developed to achieve a window with a relatively narrow main lobe and low

sidelobes [Ref. 8]. It is given by

w(n) = 0.42- 0.5cos (-n) + 0.08cos (-2n) (81)

for n = 0,1 ........... N-1.

The Blackman window is shown in Figure 3.4. Its largest sidelobe is

approximately 58 dB down from the main lobe peak. For the coefficients of this

window Equation 69 is zero but Equation 73 is not, thus this window has an

asymptotic decay of 18 dB/octave.

When referred to as the exact Blackman window, the following (exact)

coefficients are included:

ao= 7938/18608

a, = 9240/18608

a 2 = 1430/18608.
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When constructing this window, results differ from those of Hams [Ref.

2]. The exact Blackman window is depicted in Figure 3.5 and shows the largest

sidelobe to be approximately 65 dB below the main lobe peak, not 51 dB down as

cited in Harris work [Ref. 3]. Experimental results were closer to those presented

by Nutall (68.2 dB lower) [Ref. 3]. The rate of fall off is only 6 dB/octave.

(Equation 69 is not equal to zero for the coefficients of this window).
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5. Kaiser-Bessel Window

This window is of the form of the zero-th order modified Bessel function

[Ref. 91 and is given by

1o(xla .0-j )
2 N

w(n) = Io() for 0 I Nl < where (82)

10(x) = k]2 (83)

The parameter a can be selected, and its choice is a tradeoff between

sidelobe level and mainlobe width. The transform is approximately given by

N sinh (Fa22-(N/2)2 (1W(O) = F0(a:) /a2X2_(N.12)2 (84)

This window is presented in Figure 3.6 and Figure 3.7 for the values a = 2 and a

= 3, respectively.

The figures demonstrate that for value of a= 2 the highest sidelobe peak

is approximately 50 dB down from the mainlobe peak, whereas for a = 3 the

sidelobe peak is approximately -70 dB, but a considerable increment in main lobe

width should be noted. For both cases a fall off of 18 dB/octave is observed.
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E. HARMONIC ANALYSIS USING CLASSICAL WINDOWS

The experiment to be described follows closely that presented by Harris

[Ref. 2]. The objective is to demonstrate the influence that classical windows

have on the detection of a weak spectral line in the presence of a strong nearby

line. A signal composed of two frequencies has been considered, with the

following parameters:

" sampling frequency f,- 1 Hz.,

"* record length T:= 256,

"* number of samples N = 256,

"* signal amplitudes A1 = 1, A2 =0.01(40 dB separation),

"* signal frequencies f, = 10.5 bins = 10.5 f,/N and f2 = 16 bins = 16 fs/N.

It is interesting to observe the behavior of the rectangle window when the

two spectral lines are located exactly in DFT bins (i.e. f,= 10 bin , f2= 16 bins ).

This is shown in Figure 3.8, where we can observe that the rectangular window

allows identification of each spectral line with no interaction. However, in the

present analysis the more difficult problem (i.e. f, = 10.5 bins) will be presented,

that is where the poorer resolution occurs.

The power spectrum for a signal with fl= 10.5 bins and f2 = 16 bins is show

in Figure 3.9, where the sidelode of the larger signal has completely hidden the

mainlobe of the smaller signal. This is due to the fact that the sidelobe level of

the rectangle window 5.5 bins from the center is only at 25 dB down from the
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peak (see Figure 3.1). Therefore the smaller signal (5.5 bins away from the

largest) could not be detected because its main peak is at more than 25 dB down

(i.e., -40 dB).

The case when applying a triangular window is presented in Figure 3.10,

where the side lobes have fallen by a factor of two over the rectangle window's

sidelobes (i.e., the -30 dB level has fallen to -60 dB). Also, the sidelobes of the

largest signal have fallen to approximately -43 dB at the smaller signal so it is

barely detectable (its mean peak level is at -40 dB). The artifacts at the base of

the side lobe structure are probably due to the coherent addition of the kernels of

the two signals.

The results of applying the Hamming window are presented in Figure 3.11.

Here the weak signal can be detected, since its peak appears approximately at

35 dB down or approximately at 3 dB over the side lobe of the largest signal.

Note that the sidelobe structure of the larger signal extends over the entire

spectral range.

We next apply the Blackman window, and the results are depicted in Figure

3.12. The presence of the smaller signal can clearly be seen, since there is a

deep null between the two lobes of approximately 17 dB. The artifact at the base

of the large signal lobe is the sidelobe structure of that signal. The rapid rate of

fall-off of the side lobes should be noted.
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In Figure 3.13 the results of applying the exact Blackman window are

presented. As in the Blackman window, the smaller signal is detected, since an

approximately 20 dB null between the lobes of the two signals is observed. Note

that now the sidelobe structure of the larger signal extends over the spectral

range. However, this leakage is not too severe, since it is about 60 dB lower than

the main lobe peak.

The last window to be demonstrated is the Kaiser-Bessel window, and the

results are presented in Figures 3.14 and 3.15 for the valuesa = 2 and a = 3,

respectively. Here too, an obvious detection of the weak signal can be made. It

is important to note the effect of choosing the parameter 'a', since a trade off

between sidelobe level and main lobe width must be considered. For instance,

with a = 2, a null of approximately 20 dB is between the two main lobes, and the

side lobe structure of the larger signal is about 60 dB below the main lobe, as

illustrated in Figure 3.14. However, an improvement in the sidelobe level should

be noted when a = 3, but at expenses of an increment in the main lobe width,

shown in Figure 3.15.

Figure 3.16 illustrates sidelobe levels for some of the windows discussed

above [Ref. 10].
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When additive white Gaussian noise (AWGN) corrupts the signals then the

larger signal (centered at 10.5 bins) is detected even at low levels of signal to

noise ratio (SNR) of 0 dB, as shown in Figure 3.17. The weak signal (at 16 bins)

can not be detected even at high levels of SNR (i.e., 30 dB), as shown in Figure

3.18. Therefore, the performance in the presence of noise using classical

windows will be simulated using a signal composed of two equal amplitude

components, centered at f, = 10.5 bins and f2 = 11.5 bins, as is demonstrated in

Section 4.3.
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Figure 3.17. Classical Windows Simulation With Low-Level Signal-to-Noise Ratio.
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IV. NONTRADITIONAL WINDOWS

A. INTRODUCTION

The main objective of this chapter is to study a new data window for use in

Fourier-based non-parametric spectral analysis. The weighting function to be

studied is complex valued and consists of an analytic linear FM chirp. This is

shown in Figure 4.1, where the complex valued function, its real and imaginary

part as well as the magnitude is plotted. Due to the fact that this nontraditional

window has high resolution capabilities [Ref. 1] and given the ease with which

Fourier spectra can be computed (i.e., computationally efficient), this kind of

window can become an attractive tool in spectral analysis.

The work to be done here can be summarized as follows:

° To analyze the results of J. Griffiths [Ref. 1] and to replicate them using

MATLAB [Ref. 10];

"° To establish the signal to noise ratio sensitivity of this type of window;

"• To examine the behavior of this window when using damped sinusoidal

signals;

# To develop a mathematical approach to investigate the behavior of this

window in the presence of one or several signals.
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B. FM CHIRP WINDOW DEFINITION AND EXPERIMENTAL RESULTS

In accordance with J. Griffiths's work, the goal is to define a window wn)

that has high resolution capabilities. The weighting function which meets this

objective is the linear FM chirp, defined by

w(n) = eje(n), (85)

for n = 0,1 ............... N - 1, where 0(n)is the phase term and is defined as

0(n) = 03(n - 1) + 0(n). (86)

In the last expression, the term Q(n) is the digital instantaneous frequency,

and is expressed as

Q(n)-= 2-xn (87)

The phase term is initialized to zero at n = 0 and is given by

0(n) -- 2[ n(n+l) (88)
N 2

Once the windcw is defined, the Fourier-based spectral estimate can be

obtained from the magnitude of the Fourier transform of the windowed data

sequence x(n) by

IN-1 -i2irnk 2
oper(k) = x(n)w(n)exp( N (89)

Sn--6
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Note that the periodogram is not normalized by N. In order to simplify the

analysis, periodogram averaging is not employed. The simulations to be

presented are at sufficiently high SNR that averaging does not significantly

change the response.

Several different sets of parameters will be used in the simulations. The

data is a 32 point sequence, padded with 96 zeros to allow a 128 point FFT. This

1:4 ratio of data size to transform length is employed throughout the simulations,

with the purpose of obtaining "smoother" curves in the frequency domain. The

value of the number of sampling points is 32. Using a spacing between samples,

of T 3= 1 provides a DFT bin width of 1/N.

The magnitude spectrum for the linear FM chirp window is dericted in

Figure 4.2. From this it should be noted that the magnitude of the spectrum

shows a deep null at DC (i.e., 0 Hz), and is approximately constant, at 15 dB (or

1 01ogio(32)), at other frequencies [Ref. 4]. It is important to observe that the width

of the sharp null is less than 1/4th bin (Note that a bin is defined in terms of the 32

point data duration and not the overall transform length, i.e., binwidth = 1/32).

The phase spectrum for the window under study is shown in Figure 4.3, and

it can be observed to have a quadratic behavior. It should also be noted that

there is a n discontinuity at the 0 frequency point. The results of the window

amplitude and phase simulation in this work are agree which those presented by

Griffiths.
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The next simulation to be performed is for the case of a single complex

input sinusoid, in additive white Gaussian noise (SNR = 30 dB). In Section C a

noise simulation to determine the signal to noise sensitivity of this kind of window

will be performed using different SNR levels. The magnitude spectrum estimate

shown in Figure 4.4 is obtained when

x(n) = exp(j21cn(:2)) (90)

is used in Equation (89). The frequency of this complex sinusoid is therefore f0 =

0.328125 Hz. From Figure 4.4 it can be noted that it is the chirp window

transform shifted to the frequency of the signal (i.e.,f0 = 0.328125 Hz). Since the

multiplication of two functions in the time domain corresponds to the convolution

of the two corresponding transforms in the frequency domain it should be noted

that a sharp null is located exactly at the frequency of the signal.

It is important to note that the frequency of the signal is not DFT bin

centered (i.e., f = 10.5f.lN). This means that the simulation is done for the worst

resolution case or, in other words, when spectral leakage occurs.

The results of the next simulation are presented in Figure 4.5. It shows the

behavior of the transform of the chirp window in the magnitude spectrum when

two analytic sinusoids are present. A second complex valued sinusoid is added

to the data used for Figure 4.4. The signal frequency is at f2 = 0.3125 Hz, which

corresponds to a DFT bin of 10 (i.e., f2= 10f,/N), and thus the two signals are one
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half bin apart. In Figure 4.5, the magnitude spectrum is observed to be

completely different from that produced when a single sinusoid is present. In fact,

two nulls are not observed at locations that correspond to the signal frequencies.

One explanation as to why two deep nulls are not observed is that a

Fourier-based method is employed, and it has linear properties. The shape of the

magnitude spectrum illustrated in Figure 4.5 is related to the sum of the response

for the case when a single input is present (Figure 4.4), with a similar response

that is obtained by shifting to the left by 0.0156 Hz (i.e., 0.328125 Hz-0.3125 Hz).

But due to the fact that the periodogram is not a linear process (magnitude

squared of the transform) the resultant spectral estimate has to involve the

contribution of the implicit crossterms, produced when the magnitude of the

Fourier transform sum of the individual weighted data is squared (i.e.,

I(x 1(n)) + (X2(n))w(n)exp( )-12), where x 1(n) and X2(n) are the data sequences

representing each one of the analytic signals, respectively.

However, it is important to keep in mind the changes that the chirp window

produces in the magnitude spectrum when two closely spaced sinusoids are

present in the data, as compared to when only a single sinusoid is present. This

can become an advantage over traditional windows, since the chirp window could

detect spectral lines that are less than a bin apart.

Figure 4.6 illustrates the magnitude spectrum obtained when using

conventional windows. In this case, the data used to produce Figures 4.4 and 4.5
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is weighted by a raised cosine (i.e., Hamming window) prior to computing the

transform. Figure 4.6a shows the magnitude spectrum for the case of a single

complex valued sinusoid located at f,=0.328125 Hz. Figure 4.6b illustrates the

magnitude of the transform for the case of two analytic sinusoids that are

separated by one half bin (i.e., f, = 0.3125 Hz f2 = 0.328125 Hz). As expected,

only a single peak is observed in both cases, even though Figure 4.6b is the

magnitude spectrum for two signals. This is due to the fact that conventional

windows can not resolve spectral lines that are separated by less than one bin.

The final example presented by J. Griffiths to illustrate the differences

between traditional and FM chirp windows is in the use of a signal containing

frequency steps (i.e., frequency shift keying). The signal consists of a sinusoid at

0.2 Hz for the first 16 samples, and 0.4 Hz for the remaining 16 samples. In this

case, it is necessary to guarantee a phase continuity of the time waveform at the

location of the frequency jump. It was therefore necessary to define an

instantaneous frequency .2(n) (Equation 87) as the desired discontinuous

function and then compute O(n) by means of Equation 86.

A marked difference can be observed, as shown in Figure 4.7, when

computing the magnitude spectrum for the cases of weighting data with classical

and FM chirp windows for a frequency stepped signal. Figures 4.7a and 4.7b

illustrate the magnitude spectrum when the weighting function is a traditional

window (i.e., a Blackman window 32 points in length) and the data is a sinusoid

60



containing a frequency which moves from 0.2 Hz to 0.4 Hz at the midpoint of the

data record. Figure 4.7a displays a signal with a shift upward from 0.2 Hz to 0.4

Hz, while in Figure 4.7b the frequency shifts from 0.4 Hz to 0.2 Hz (downward) as

time progresses. From these figures it can be observed that the traditional

magnitude spectra are almost identical for both cases of FSK signals, so it is not

possible to determine which way the signal frequency shifts. When the chirp

window was used with the same FSK signals, the results depicted in Figure 4.7c

are obtained for an upward step and Figure 4.7d when the frequency is stepped

downward. It is important to note that in order to be consistent with the results

presented by J. Griffiths, an SNR of 30 dB (or better) was employed.

A possible explanation as to why the upward change in frequency causes a

result that presents a marked difference from that when the change in frequency

is downward is the fact that the chirp introduces a time varying spectral

component (instantaneous frequency) which will affect the upward and downward

shifts differently. Since the weighting data is an FM chirp with instantaneous

frequency defined by 0(n), the net instantaneous frequency is simply the sum of

the instantaneous frequencies of the data and the window [Ref. 4]. Analysis of

Figures 4.7c and Figure 4.7d, shows that an FM modulation, upward or

downward, will result in an magnitude spectral estimate which presents multiple

nulls in the lower spectral regions, as is shown in region 0.25 Hz to 0.5 Hz in

Figures 4.7c and 4.7d. One should also note that the two main peaks in Figures
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4.7a and 4.7b are also located in the lower spectral region. If the frequency

function of the signal is time reversed such that the high frequency portions

appear at the beginning of the record (i.e., step downward), then the location of

the maxima and the minima of the spectral estimate are reversed. For instance,

we can observe from Figure 4.7c that the maximum value (i.e., 20 dB) of the

magnitude spectrum occurs at approxim3tely 0.4 Hz. Whereas in Figure 4.7d the

minimum value (i.e., -3 dB) of the spectral estimate occurs at approximately 0.4

Hz.

C. SIGNAL TO NOISE RATIO SENSITIVITY OF FM CHIRP WINDOW

The discussion here relates to the minimum signal to noise ratio at which

the chirp window method still yields useful results. For the simulation, we realize

that the results are dependent upon the transform length. In the simulation the

data length and transform length are 32 and 128 points, respectively. The noise

will be additive white Gaussian noise (AWGN).

For the case of a single complex sinusoid, the results of processing the data

with the complex window are presented in Figure 4.8, where it can be observed

that at a high level of SNR (i.e., 30 dB), a deep null of approximately 30 dB of

amplitude is located at the frequency of the input signal (see Figure 4.8a). When

simulations are performed at SNR's of 20 dB and 18 dB, good results are still

obtained as shown in Figures 4.8b and 4.8c. Therefore, if the SNR is better than
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18 dB good results are obtained, which agrees with Griffiths's claim that good

performances are achieved for SNR levels between 20 dB and 25 dB [Ref. 1].

When the value of SNR is reduced to 15 dB (Figure 4.8d) the spectra becomes

ambiguous, and below that value a null is no longer present at the signal's

frequency location. Therefore, the linear FM chirp window is a high resolution

weighting function for single sinusoids, but is limited to high SNR levels (i.e.,

above 15 dB).

To demonstrate the SNR dependency of the chirp window when more

than one signal is present the following experiments are performed: Two equal

amplitude sinusoids of length 32 which are one bin apart (i.e. f,= 10.5f,/N =

0.328125 Hz and f2 = 11.5fIN = 0.359375 Hz) are considered. These sinusoids

will be weighted by classical windows (i.e., Rectangular and Hamming ) and by

the chirp window for different levels of SNR. The experiment will then be

repeated for sinusoids located one half a bin apart (i.e.,fl = 10.75f3 /N = 0.335937

Hz and f2 = 11.25f,/N = 0.351562 Hz). Note that in both cases the signals are not

bin centered and the sequence is padded with 96 zeros to provide a 128 point

FFT.

On observing the lack of two deep nulls at the signal frequencies when the

data is weighted by the chirp window, it should be noted that the point Griffiths

argues that, when two or more closely spaced sinusoids are present in the input

data, the spectral estimate will have a shape that resembles that shown in Figure
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4.5. Different levels of SNR have been chosen to determine over which range of

SNR values, the magnitude spectrum continues to produce useful results. Data

with the same levels of SNR (i.e., 30 dB, 18 dB, 9 dB and 0 dB) will be compared

using rectangular, Hamming, and FM chirp windows.

Figure 4.9 shows the results when the input data is weighted by a

rectangular window. From this it can be observed that the two higher main lobes

are located exactly at the frequencies of the composed signal. At an SNR of 30

dB (Figure 4.9a), detection of the two signals is excellent. At an SNR of 18 dB

(Figure 4.9b) and an SNR of 9 dB (Figure 4.9c) good results are also found,

whereas at an SNR of 0 dB (Figure 4.9d) the result begins to be ambiguous, even

though the signals are still recognizable.

Figure 4.10 shows the results when the weighting function is a Hamming

window. As expected, a better sidelobe level is found here than when using a

rectangular window, but it should also be noted that the main lobes are now

broader. As in the rectangular window, at an SNR of 30 dB (Figure 4.10a) and an

SNR of 18 dB (Figure 4.10b) the results of the spectral estimation are good. At

an SNR of 9 dB (Figure 4.10c) reasonable results are still obtained, but at an

SNR of 0 dB (Figure 4.10d) the observed spectral estimate is ambiguous. Figure

4.11 shows the results when using the complex FM chirp window for the case

when the signals are one bin apart. It shows a pattern with multiple deep nulls,

and, even though two nulls are observed at approximately the frequency of the
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input signals (Figure 4.1 la and 4.1 lb), they cannot be considered detections due

to the presence of other nulls at frequencies that differ from the input frequesicies.

It is interesting to observe that at an SNR of 9 dB (Figure 4.11c), a deep null is

present near one of the input frequencies, but this also cannot be considered a

detection. However, it should be noted that the shape of the spectrum is almost

the same for SNR's of 30 dB, 18 dB and 9 dB (Figures 4.11a to 4.11c). At an

SNR of 0 dB the spectral estimate does not convey any information. Another

important observation is the fact that the shape of the spectral estimate in figure

4.11, looks totally different from that of Figure 4.5 which is the spectral estimate

when two signals are one half bin apart.

The next simulation to be performed has the sinusoids separated by one

half bin (i.e., f, = 10.75fJN = 0.33597 Hz and f2 = 11.25fIN = 0.351562 Hz). Here

also the number of data samples is 32, and the sampling frequency f, = 1 Hz.

Figure 4.12 shows the results using a rectangular window. As expected, only one

main lobe is present in the spectral estimate due to the fact that traditional

windows are not able to resolve spectral lines that are separated by less than one

bin. This main lobe can not be resolved for any SNR, for instance of 30 dB

(Figure 4.12a), 18 dB (Figure 4.12b) and 9 dB (Figure 4.12c). At an SNR of 0 dB

(figure 4.12d) the main lobe still is present but begins to be ambiguous.

Figure 4.13 shows the results obtained when using a Hamming window. As

is the case in a rectangular window, only one main lobe is present. Lower
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sidelobe levels are obtained, but at the expense of a wider main-lobe width. At

SNR's of 30 dB (Figure 4.13a), 18 dB (Figure 4.13b) and 9 dB (Figure 4.13c), a

good detection of the main lobe, representing the average spectral location, is

achieved. At an SNR of 0 dB (Figure 4.13d) the spectral estimate becomes

ambiguous.

Finally, in Figure 4.14, the results obtained using the chirp window are

depicted. It should be noted that in all simulation the axis are normalized, so that

the maximum value of the magnitude spectrum is 0 dB. Despite the fact that the

input signals are located at f, = 10.75f5 /N and f2 = 11.25fIN, which differs from the

locations of the input signals in Griffiths paper (i.e., f, = 10f, /N andf2 = 10.5f, IN)

the shape of the spectral estimate looks similar to that shown in Figure 4.5. At

least at 30 dB of SNR (Figure 4.14a) and at 18 dB of SNR (Figure 4.14b) the

shape of the spectral estimate looks similar to that shown in figure 4.5. At an

SNR of 9 dB, the shape of the spectrum begins to become distorted and at an

SNR of 0 dB it is totally different from that in Figure 4.5, hence it is unknown

whether more than two signals are present (or any at all).
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D. CHIRP WINDOW APPLIED TO DAMPED SINUSOIDS

In this section the effects of the chirp window will be studied when the data

is a damped sinusoid. First to be considered is the case of a single "damped"

sinusoid of the form

x(n) = exp(j2nn( -0'))exp(-Tcn) (91)

where n varies from 0 to 31 so that the data length is 32. The sampling frequency

f, = 1 Hz and Tc is the time constant of the decaying exponential. This input

sequence was weighted by the chirp window for different values of Tc (i.e., Tc = 1,

1/2, 1/3, and 1/4) and the obtained results are depicted in Figure 4.15. An SNR

of 30 dB was employed.

Figure 4.15a shows the result when the damped input sequence has a value

of Tc = 1, and from it we clearly observe that no null is present at the frequency of

the signal (i.e. f, = 10.5fJN = 0.338125 Hz). Moreover, the shape of the spectral

estimate is similar to that of Figure 4.5. That is, according to Griffiths, the case

when more than one input sinusoid is present.

When Tc = 1/2 the spectral estimate has the shape shown in Figure 4.15b

and from it can be observed that, as in the previous figure, no null is present at

the frequency of the input signal. In this case the shape of the magnitude

spectrum is similar to that shown in Figure 4.5 (two sinusoids one half bin apart).

For values of Tc = 1/3 (Figure 4.15c) and Tc = 1/4 (Figure 4.15d) no null is
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observed at either the signal frequency location, but in these cases the shape of

the spectrum is not similar to that of Figure 4.5. Another observation is that at the

0 frequency location for Tc= 1 (Figure 4.15a) the magnitude of the spectrum is at

approximately 10 dB, whereas when T,= 1/4 the amplitude of the spectrum at the

0 frequency point is approximately 0 dB.

The next simulation performed to determine the behavior of the complex

window is when the signal consists of two damped sinusoids. Then the signal is

given by

loft 10 US
x(n) = [exp(j2nn( -N)) + expj2nn( N ))Iexp(-Tcn). (92)

Note that the complex sinusoids are separated by one half bin.

The results of weighting this input sequence with the complex window are

d6picted in Figures 4.16a for a value of T,= 1, Figure 4.16b for Tc= 1/2, Figure

4.16c for T, = 1/3 and Figure 4.16d for Tc= 114. From Figure 4.16a we can

observe that the shape of the spectral estimate is similar to that shown in Figure

4.5. According to the theory proposed by Griffiths as it relates to the shape that

the magnitude spectrum has in the presence of two or more input signals, the

simulation is correct. But when the time constant takes values of 1/2, 1/3 and 1/4

the shape of the spectral estimate becomes to be different from that shown in

Figure 4.5. It is also important to note that, in this case, the maxima of the
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magnitude spectrum remains almost the same, regardless of the value of the time

constant.

E. NUMERICAL BEHAVIOR OF CHIRP WINDOW

The spectral estimate obtained from the magnitude of the Fourier transform

of the weighted data sequence Xn is given by

IN-1 2
Px(k) = xngnexp(-2jpkn/N)l, (93)Pxk n=o InI

where xn is a simple analytic sinusoid (for easy interpretation) of the form

Xn = exp(j27nkon/N) (94)

(i.e., one complex valued sinusoid with frequency ko), and

gn = exp(j2n(n 2 + n)/(2N)), (95)

is the chirp window equation.

It is known that the transform of the multiplication of two functions in the

time domain corresponds to the convolution of the two corresponding transforms

in the frequency domain. Therefore,

N-1
Z xngnexp(-2jtkn/N) = X(k) * G(k), (96)

n--O

where
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X(k) = 8(k - ko) (97)

is the transform of xn, and

N-1
G(k) = Z exp(j2n(n 2 + n)/2N)exp(-j27tkn/N) (98)

n=O

is the chirp window transform. Hence,

X(k) * G(k) = 8(k - ko) * G(k) = G(k - ko). (99)

While finding a close expression for Y_ exp(n 2) is difficult, developing a close

form expression is too cumbersome. When one signal is present, the spectral

shape is the transform of the chirp window will be shifted to the frequency of the

signal (i.e., ko), or

Px(k) = IG(k - ko)l 2 . (100)

The chirp window has a deep null at the zero frequency point (see Figure 4.2).

Due to the convolution the null will be simply shifted to the signal frequency

location, making the estimate of the signal possible (see Figure 4.4).

Different results are obtained when more than one signal is present, i.e.,

Xn = expo2nkon/N) + exp(j2nki n/N). (101)

In this case, the Fourier transform of the data sequence is

X(k) = 8(k - ko) + 8(k - k7). (102)
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The spectral estimate is given by

I•(k)= IG(k - ko) + G(k - ki)1 2 , (103)

or

Px(k)= G2(k - ko) + G2 (k - ki) + 2G(k - ko)G(k- k1 ). (104)

From the last expression we can observe the presence of crossterms which

prohibit the detection of two expected nulls at the signal frequency locations.

Some window parameters are estimated (i.e., mean and standard

deviation). The chirp window as in all of our experiments has a length of 32

points and is padded with 96 zeros, permitting a 128 point FFT. Because the

magnitude of the FFT is symmetric in frequency, only one-half of the transform

length (i.e., from 0 Hz to 0.5 Hz) will be considered, as is shown in Figure 4.17.

To compute the mean and the standard deviation, the first 11 points of the

window transform are rejected, with the purpose of obtaining parameter values in

the region where the shape of the transform becomes more stable (i.e., from point

12 to point 64). The following are the results of the measurements:

"• Value of window transform at 0 frequency point = 2.3437x1 014 (i.e., null)

"• Mean of the window transform = 5.8271

"• Standard deviation of window transform = 0.7275
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From the above estimates, we can observe that the value at DC is almost

zero, yielding a deep null when the magnitude spectrum of the window is

computed. The square of the magnitude of the chirp window transform is

bounded by 2.0 and 7.657, if one disregards the null at the zero location (see

Figure 4.12). Appendix C depicts an alternative window, which consists of a

square chirp window derived from the chirp window presented by Griffiths (Ref.

4).
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Figure 4.1. Nontraditional Fm Chirp Window.
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Figure 4.6. Magnitude Spectrum Using Conventional Windows.
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Figure 4.7. Magnitude Spectrum Using A Frequency Stepped Signal.
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Figure 4.10. Hamming Window With Varying Levels Of Signal To Noise Ratio (Two
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Figure 4.11. Complex Fm Chirp Window With Varying Levels Of Signal To Noise Ratio
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Figure 4.12. Rectangular Window With Varying Levels Of Signal To Noise Ratio (Two

Sinusoids One Half Bin Apart).
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Figure 4.15. Chirp Window With Single Damped Sinusoid (Varying Values Of Time
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V. CONCLUSIONS AND RECOMMENDATIONS

In this thesis some classical and non-traditional windows have been

examined as they apply to the periodogram. The periodogram approach has

some advantages and disadvantages:

"* Advantages

1. Computationally efficient, since it uses the fast Fourier transform (FFT).

2. The power spectral density (PSD) estimate is directly proportional to the

power of the sinusoidal process.[Ref. 5]

"* Disadvantages

1. Frequency resolution (Af = is limited by the record length To = NT 5 .

2. Suppression of weak signals by strong signal sidelobes.

3. Introduction of distortion in the spectrum due to sidelobe leakage.

4. Periodogram is statistically not consistent (i.e., the variance of the PSD

estimator does not tend toward zero as the record length increases). To

circumvent this problem the averaged periodogram as defined in

Equation 48 can be used, with a proportional loss of resolution.

In describing classical windows' ability to detect a weak spectral line in the

presence of a strong nearby line, it was observed that if two spectral lines are

located exactly at DFT bin centers, the rectangular window allows each to be
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identified without interaction. If any of the spectral lines are not bin centered,

spectral leakage occurs, and the sidelobe structure of the larger signal can mask

the structure of the smaller signal, thereby prohibiting its detection. One of the

most important parameters of classical windows is the sidelobe level.

When analyzing the sidelobe behavior of the classical windows considered

in this thesis, and following the method presented by Nuttall (Ref. 3), the window

with the best sidelobe behavior is the Kaiser-Bessel window (fora = 3). The

largest sidelobe is approximately 70 dB be:,w the mainlobe peak. Another

important question is the trade-off between sidelobe level and main lobe width of

a given window.

A very important limitation of classical windows is their poor capability for

detecting spectral lines that are separated in frequency by less than one DFT bin.

In fact, as is demonstrated in Figure 4.6b, the magnitude squared Fourier

spectrum does not provide an immediate indication of the fact that two closely

spaced sinusoids (i.e., one-half bin apart) are present, because only one main

lobe beam is obtained. The Fourier-based spectral analysis therefore lacks good

resolution. A non-traditional window (the chirp window), which was tested for its

resolution capabilities in this thesis.

The simulation results presented in Chapter IV demonstrate that the chirp

window can distinguish between single and multiple sinusoidal components when

these components are located less than one DFT bin apart.
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For a single complex valued sinusoid, simulation results show a deep null

located exactly at the signal frequency. This is due to the fact that the magnitude

spectrum of the chirp window exhibits a deep null at the 0 frequency point and, if

the data consists of a single sinusoid, the spectral shape is simply the transform

of the chirp window shifted to the signal frequency. However, it should be noted

that this detection is limited to high signal-to-noise ratios (i.e., above 15 dB).

In the case of two equal amplitude complex valued sinusoids, simulation

results show that the shape of the spectrum differs from that when a single

sinusoid is present. In fact, two nulls are not present at the frequency signal

locations, and the pattern observed consists of a non-uniform spectrum which

contains nulls at lower frequencies and broad peaks at higher frequencies. One

possible explanation as to why two nulls are not observed at the signal frequency

locations is that the shape of the magnitude spectrum is related to the sum of the

response of the individual weighted signal transforms. The periodogram is not a

linear process (i.e., magnitude squared of the Fourier transform). The resultant

spectral estimate involves implicit crossterms. The use of the complex valued

chirp window creates large differences in the shape of the magnitude spectrum

depending upon whether single or multiple frequencies are used. The presence

of two or more signals can be inferred from the shape of the magnitude spectrum.

It must be emphasized that the results described above do not apply when

the data contains damped sinusoids. When a single damped sinusoid, with a
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time constant equal to the data length or one-half the data lenth, is weighted by a

chirp window, the resulting spectral estimate does not have a null at the signal

frequency location. The spectrum shape is similar to that found when more than

one sinusoid is present. If the sinusoid decays very fast (i.e., the time constant is

smaller than one-third of the data length), even less satisfactory results are

obtained.

In the case of two damped sinusoids with a time constant equivalent to the

data length, the resulting spectral estimate agrees with the results found when

using non-damped sinusoids. However, when the time constant has values of

one-half and one-third of the data length, the spectral shape yields nulls at lower

and higher frequencies. At a time constant value of one-quarter of the data

length, nulls are observed only at higher frequencies. The chirp window is not a

desirable weighting function when damped sinusoids are present.

Another aspect is the use of the chirp window when the signal contains

frequency steps (i.e., FSK). A marked difference in the spectral estimate is noted

for the upward change relative to the downward change case. This difference in

the spectrum shape is due to the fact that the chirp window introduces a time

varying spectral component, or digital instantaneous frequency, which will affect

the downward and upward shifts differently. However, this change in the shape

spectrum can offer an advantage over traditional windows, since the use of

91



traditional windows as weighting functions results in a spectral estimate which is

almost the same for the downward shift and upward shift cases.

The numerical value of the window transfom at the DC location is almost

zero. This confirms the presence of a null at the 0 frequency point in the

magnitude spectrum. Simulation results show that the alternative non-traditional

window presented in Appendix C (which is a square chirp window) behaves much

like the chirp window studied in Chapter IV. It should be noted that the square

chirp window is limited to high SNR (above 15 dB).

Finally, a continuation of the research into non-traditional windows is

recommended, since they have better resolution properties than conventioial

windowing techniques, such as the raised cosine window.
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APPENDIX A. RELATIONSHIP BETWEEN THE TRANSFORM OF A CON-
TINUOUS SIGNAL AND A SAMPLED SIGNAL.

To demonstrate the relationship between the sample transform X,(f) and the

Fourier transform X(f) of continuous function x(t), define

"" ,f-). (A.1)Xsf .= n:--w T

Let x,(t) be a pulse train of delta functions:

x8(t) =n6_W 8(t- nT.). (A. 2)

Because Equation A.2 is a periodic function, it can be expanded in a Fourier

series as

xa~t) •,-2nnt

E xnexp(j-T), 3)
X5)=n=-.0oA.3

where

L ' f. 2 x(t)exp(-jxnt )dt. (A.4)X n = s - / 2T

If x(t) = 8(t), and recalling that .., x(t)8(t - t)dt - x(T), a periodic pulse train of delta

functions can be written so that

Xn= T- f'T 8(t)exp(-j-n t )dt = -e° (A.5)
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hence

X 1 (A. 6)

Therefore Equation A.3 can be written as

F.8(t - nTs) = 7n , expa-.). (A. 7)

If t is replaced by f and T, by -, Equation A.7 becomes

(f- n) Ts , exp(j2rfnT5 ). (A. 8)-00 T , n=-

Next, recalling that the Fourier transform of the sampled data is

00

Xs(f) =Y, x(nT,)exp(-j2nfnTs), (A. 9)

and that the continuous function of x(t) can be written as

/ I , /

x(t) = J X(f )exp(j2nf t)df, (A. 10)

replacing Equation A. 10 into Equation A.9 yields

f= X(f )df Z exp(j2nn(f- f )Ts). (A.11)

Applying Equation A.8 shows that

exp(j2rn(f- f )Ts) n '- n=(f- f - T2n=-ýo = --CO, A.2

and therefore
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X,(f)=J®x(f), y- 8(f-f n )df. (A.13)
Ts =-.ooT

But by the property of the delta function,

Jr x(t)8(t - t0)dt = x(to). (A.14)

The final result is

S-_y X(f _ n9 (A. 15)x T.f n= -0 T,"
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APPENDIX B. PROCESSING GAIN

Processing gain is defined as the ratio of output signal to noise ratio (SNR)o

to input signal to noise ratio (SNR),, and is given by

PG = 
)(SNR)

where SNR is defined as the ratio of signal power to noise power (i.e. SN).

The derivation of (SNR)o = S/No. Let the sampled sequence be defined by

x(nTs) = Aexp(jOknTs) + q(nT.), (B.2)

where q(nT,) is a white noise sequence with variancea2 , and

2irk
Wk = NTW (B.3)

The component (i.e., signal plus noise) of the Fourier transform is given by

X(w k) E x(nTs)w(nT.)exp(7-joknT,) (B. 4)

where w(nT,) is the window sampled sequence.

Using Equation B.2 in Equation B.4 obtains the value of the signal component

X(cok)sMgnJ= Y. A exp(JoknTs)w(nT,)exp(-j2(0knTs) (B.5)

or
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X(Ok) sgnal = A 1 w(nTs). (B. 6)

The power component of the signal is therefore

(Power)hgnai = So = A2[ w(nTs). (B. 7)

The noise component of the windowed transform is given by

X(WOk)noise = Y w(nTs)q(nTs)exp(-jGiknTs). (B 8)

The noise power (the mean square value of this component) is given by

E[ IX((wk)no.is 12 7- E w(nTs)w(mTs)
(n mn (B. 9)

E[q(nTs)q (mTs)]exp(-j(OknTs)exp(ji)kmTs)

If m = n, and the mean of the noise is zero, it follows that

E[IX((ok)noi12 = No = a 2 n w 2(nTs), (B. 10)

and therefore

(0 So A2[ n w(nTs)1(SN -oo-- NB. (n.11)
n

It is known that for an AWGN case, the relationship (SNR)npt is given by

(SNR)j- - A2 (B. 12)
a~q
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If the results of Equation B. 11 and Equation B. 12 are applied in Equation B. 1, the

processing gain is obtained as

P= [ w(nT.)

PG-(SNR), F, W2(nT.) (.3
n

For the case of a rectangular window, the sum of the window terms is given by

Ni N-1
N w(nT5) = N, w2(nTs) = N (B. 14)

n=O n=o

then the processing gain for the case of a rectangular window is N, as in

N2

(PG)rect.YAndow = -= N . (B. 15)

This gain is obtained when processing an analytic signal (i.e., complex

valued sinusoid in AWGN). For any other window, the gain is reduced due to the

windows roll-off.

There is a practical approach to computing the processing gain for the case

of a rectangular window with real input and a complex input signal. If the input

signal is real, then

x(t) = A cos(27tft). (B. 16)

Therefore,

S, _A2/2 A2 B 7
(SNR)i R No/2 = N. (8.17)
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and, because the length of the window is N, it follows that

so A2/4 A2N (B. 18)
(SNR)o =� N - No/2N = 2No "

The processing gain is then given by

(SNR)o A2 N/(2No) N
(SNR), - A2 /N -- 2"

From Equation B.19, it can be seen that PG for the case of a rectangular

window, when the input signal is real, is half that found when the input signal is

complex. This is due to the fact that the value of the power output signal (i.e., So)

is twice the value of So when the signal is real. In other words, if the input signal

is of the form

x(t) = A exp(j2nft), (B. 20)

the relationship (SNR)i remains the same as in Equation B.17, but (SNR)o is given

by

_S 0  A2/2 A2N
(SNR)o - N0 _ N0/2_ N (B.21)No No /2N No

Therefore, PG in the case of a complex input signal is

(SNR)o A2 N/No

(PG)rect.undow - S-SNR)= N (B.22)

and Equation B.22 agrees with Equation B.15.
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APPENDIX C. AN ALTERNATIVE NONTRADITIONAL WINDOW

The alternative chirp window depicted here consists of a hard dipped chirp

generated from the chirp window studied in this thesis. The MATLAB program for

this window can be found in Appendix D.

This window has a 32 point length and the equation for the chirp window

(i.e., w(n) = exp(j 0(n))) has been modified according to the following equations:

The angle omega is defined by

S= arctan(im ag(w (n))/real(w (n))) (C. 1)

then, if

0> -7t/4 and Q 0 57/4 = w(n) = I + Oj (C.2)

if

Q > n/4 and Q :5 37t/4 = w(n) = 0 + j, (C. 3)

if

0 > 3n/4 and Q 7< => w(n) = -1 + Oj (C.4)

if

Q > -7t and 0 :• -37/4 > w(n) = -1 + Oj (C.5)
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and, if

0> -37r/4 and 0 : -n/4 =: w(n) = 0 -j (C.6)

Figure C.i a, depicts the projection of the window on the real and imaginary

plane, while figures C.lb, C.lc and C.ld, show the real, imaginary part and a

three dimensional plot of the window, respectively. From this figures it can be

observed tha 'he real and imaginary part toggle, this means that when the real

part is ±1 the imaginary part is 0, and vice versa.

Figure C.2a shows the spectrum of the window. It can be observed that the

shape is similar to that of the magnitude spectrum for the FM chirp window, with a

deep null at the 0 frequency location. This window can therefore be considered

as a high resolution procedure for single sinusoids. Figure C.2b shows the

magnitude spectrum when a single sinusoid is present. The frequency of the

signal is at 0.328125 Hz. (i.e., f, = 10.5fs/N), and a deep null is observed at the

proper signal frequency location. Note that the frequency location is not bin

centered. An SNR of 20 dB is employed. It should also be noted that the

amplitude of the null seems to be greater than that of the chirp window (compare

to Figure 4.4).

Figure C.2c depicts the spectrum when two signals are present. The

frequency of the signals are located at 0.3125 Hz (i.e., f, = 1Ofs/N) and at

0.328125 Hz (i.e., f2 = 10.5fs/N). This figure shows that the minimum of the
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spectrum does not occur exactly at the signal frequency locations, and the

spectrum shape is totally different than that resulting from a single signal (Figure

C.2b). The magnitude spectrum for this type of window when more than one

signal is present has behavior similar to that presented by Griffiths (Figure 4.5),

that is, multiple nulls at lower frequencies and smooth spectral shape at higher

frequencies, confirming his contention that such a change in the magnitude

spectrum can be attributed to the presence of more than one signal.
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Figure C.1. Square Chirp Window.
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Figure C.2. Magnitude Spectrum Of The Square Chirp Window.
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APPENDIX D. MATLAB PROGIRAMVS

%RECTANGULAR WINDOW cIg
cig n=1 i51
n=1:51: x=-25:25;
x=-25:25- w=hamming(51);
w=ones(1 ,Iength(n)), axis([-30 30 0 11)l
axis(I-30 30 ) 21); subplot(21 1 ),plot(x,w),title('Hamming window'),xlabel(Wn),
subplot(21 1 ),plot(x~w),title('rect.window'),xlabel('n'),ylabel(' ..

w(n)') ylabel('w(n)')
wf=abs(ff tshift(fft(w, 1024))): wf~abs(fftshift(tffl(w,1 024))),
W=20* og IO(wf/max(wf))-, W=20*logl 0(wt/max(wf)),

axis(I-4 4 -80 01): axis([-4 4 -80 01);
subplot(21 2),plot(f(: :1 024),W),xlabel('radian frquency'), subplot(21 2),plot(f (1 :1 024),W),xlabel ('radian frequency'),
ylabel ('Iog- magnitude of transform'), .. ylabel('Iog-mragnitude of transform'),..
title('1024 point FFT of rectangular window') fitle('1024 point FFT of Hamming window')
grid grid
pause pause

%TRIANGLE WINDOW %BLACKMAN WINDOW
cIg clg
n=1:51: n=1:51;
x=-25:25; x=-25-.25;
w=bartlett(51);. w~blackmran(51);
axis([-30 30 0 1]); %w=(7938/118608)-(9240/118608)*cos(2*pi~n/50)+(1 430/1
subplot(21 1 ),plot(x,w),title('triangular window'),xlabel('n), 8608)*cos(4*pi*n/50);

... axis([-30 300 1]);
ylabel('w(n)') subpiot(21 1 ),pIot(x,w),Itiie('Blackman window'),xiabel('n),
wt=abs(fftshift(fft(w,1 024))). .
W=2OiloglO(wf/rmax(wf))-; ylabel('w(n)')
f=-pi-:2*pi/Iength(W):pi; wf=abs(fftshift(tft(w,1 024)));
axis([-4 4 -80 01): W=20*Iog1 0(wf/max(wf)):
subplot(21 2),plot(f(1 :1 024),W),xlabei('radian frequency'), f=.pi:2*pi/Iengfh(W):pi;
ylabel('Iog-magnitude of transform'), .. axis([-4 4 -80 01);
litle('1024 point FF1 of triangular window') subplot(212),plot(f (1:10241 W),xlabel ('radian frequency'),
grid ylabel('Iog-magnitude of transform'),..
pause title('1 024 point FFT of blackman window')
%HAMMING WINDOW grid
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pause gtext('rect.')
gtext(Iriang.')

%KAISER-BESSEL WINDOW gtext~bamming')
cig gtext('blackman')

x=-25-:25-, pause
w=kaiser(51 ,2*pi);
%w=kaiser(51,3*pi)
axis([-30 30 0 11); %APLICATION OF CONVENTIONAL WINDOWS TO DETECT
subplot(21 1),plot(x,w),title('Kaiser window A WEAK SIGNAL(amplitude=O.O1) IN THE PRESENCE

(a=3)'),xlabel('n'),... %OF A STRONG(amplitude=1) NEARBY
ylabel('w(n)') SIGNAL(amplitude=O0.01)
wf=abs(fftsliift(ftt(w,1024)));, %RECTANGULAR WINDOW (TWO SIGNALS: tl=l0fsM N
W=20*Iogl O(wflmax(wf)); f2=16ts/N)
f=-pi:2*pi/Iength(W):pi: clear
axis(I-4 4 -100 01); clg
subplot(212),plot(f(1 :1024),W),xlabel('radian frequency'), . n--0:255:
ylabel('Iog-magnitude of transform'), ... s=-(cos(2*pi*1 O*n/256)+O 01*cos(2*p*16*n/256));
title(1l 024 point FFT of Kaiser window a=3') wf=abs~fts));
grid W=20*Iogl 0(wf/max(wf));,
pause axis(I0 100 -80 01);

subplot(21 1 ),plot(n,W),xlabel('k'),ylabel('log-mnag. of transf.
%SIDELOBE LEVELS OF CLASSICAL WINDOWS (dB)'),..
clear title('RECTANGULAR WINDOW (TWO SIGNALS: tl10lfs/N
clg 12=1 61sN)')
n=200; pause
dbs=-60;
b=O0.1 102*(dbs-8.7); %RECTANGULAR WINDOW (11=1 0.51 s/N .2=16fs/N)
w=[boxcar(n)triang(n)hamming(n)blackmian(n)kaiser(n,b)1, clear
axis([-50 250 0 1.21); n--0:255;
subplot(21 1 ),plot(w) s=(cos(2*pi*10.5*nI256)+0.01 *cos(2*pi*16*n/256));
gtext('rect.') %s--(cos(2*pi*10.25*n/256)+cos(2*pi*16*n/256));-
gtext('triarig.') wt-abs(fft(s));
gtext('hamming') W=20*IoglO(wf/max(wf));
gtext('blackman') axisU[O 100 -80 01);
gtext('kaiser') subplot(21 2),plot(n,W),xlabel('k'),ylabel(')og-rnag. of transi.

[my,nyj=size(y); litle('RECTANGULAR WINDOW (TWO SIGNALS:
f=(0:49)/51 2; f1=1 0.5fs/N 12=1 6fs/)')
Pyy=y(1 :50,:,).*conj(y(1 :50,:)); pause
axis;
subp Iot(21 2),semi logy(f, Pyy) %TRIANGLE WINDOW (fl1=1 0.5fs/N , f2=1 61 s/N)
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clear title('BLACKMAN WINDOW (TWO SIGNALS: 11 =1 0.51s/N
cig 12=16ts/N)')
n=0:255-, pause
si =(cos(2*pi*1O.5*n1256)+.01. *cos(2*pi*16*n/256))'- %EXACT BLACKMAN WINDOW
wi =(bartlett(256)); wi =(0.42659071 -0.49656062*cos(2*pi~n/256)+0.0768486
wzwl. *si; *o(*in26),
wt=abs(Itt(w))-; w=wi .s1;l
W=2Oilogl O(wl/max(wl));, wf=abs(ft(w));
axis(tO 100 -10 01); W=20*Iogl O(wt/max(w1))-;
subplot(2i 1 ), pl ot(n,W),x label (Yk), ylabelI('log- mag. of transi. subplot(21 2), plot(n,W), xlabel('k'),ylabel ('log- mag. of

(dB)'). ... transf.(dB)'),..
title('TRIANGLE WINDOW (TWO SIGNALS: Ii=1 0.51 s/N litle('EXACT BLACKMAN WINDOW (TWO SIGNALS

12=1 6fs/N)') fl=10.5fs/N t2=i6fs/N~))
pause pause

%IIAMMING WINDOW (11=10.51 s/N , 12=i6fs/N) %KAISER-BESSEL WINDOW(B=2) (11140.5fs/N,
clear t2=1 61s/N)
n=-0:255; clear
si =(cos(2*pi*1 0.5*n/256)+0.0i cos(2*pi*i6*n/23.6))'; clg
wi =(hamming(256));- n-0:255;
w=wl .*sl; si =(cos(2*pi *10.5*n/256)+0.01 *cos(2*pi* 1 6n/256));:
wf=abs(lft(w)); wi =(kaiser(256,2*pi));,
W=20*iogl O(wf/max(wi)); w=wi .*sl;l
axis(IO 100 -70 01); wt=abs(Iff(w));
subplot(2i 2),plot(n,W),xlabel('k'),ylabel('Iog-mag. of transf. W=20*Iogi O(wf/max(wf));

(dB)'), ... axis([O 100 -70 01)-,
title('HAMMING WINDOW (TWO SIGNALS. tl=10.5ts/N subpfot(211),plot(n,W),xlabel('k'),ylabel('Iog-mag. of

12=1 6fs/N)') transf.(dB)'),..
pause title('KAISER-BESSEL WINDOW B=2 (SIGNALS t1=10.Sfs/N

12=161 s/N)')
%BLACKMVAN WINDOW (t1=10.5fs/N , f2=161s/N) pause
clear %KAISER-BESSEL WINDOW (B=3)
cig wi =(kaiser(256,3*pi));
n=01255-; w=wl *51;
si =(cos(2*pi1l O.5*n/256)+0.01 *cos(2*pi*1 6*n/256))y; wt=abs(flt(w));
wi =(blackman(256)); W=20*Iogl 0(wi/max(wt));
w=wl.*s1; subplot(21 2),plot(n,W),xlabel('k'),ylabel('Iog-mag. of
vA=abs(ffl(w));, iraist.(dB)'),..
W=2Oilogl O(w1/max(wi));, title('KAISER-BESSEL WINDOW B=3 (SIGNAL: Ii =10.51s/N
axis([0 100 -70 01); 12=1 6ts/Ny)'
subplot(21 1 ),plot(n,W),xlabel('k'),ylabel('log-rnag. of pause

transt.(dB)'),
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W3=2Oliogl 0(wt3lrnax(w13))ý,
%DETECTION OF WINDOWED SIGNAL IN AWGN subplol(222),plot(n,W3),xlabel('k').ylabel('Iog-mag, of

ENVIROMENT transt. (df)), .
%RECTANGULAR WINDOW (fl=lOfs/N f2=16fs/N) title('Hamming window (AWGN)')
clg gtext(tl1=1O.5bifi t2=16bin'),-
n=O 255; gtext('SNR=O0dB'),
rand( norrmal); pause
r-1I(1A A(0/20))*tand(n). %OJO SNR level
s2=(cos(2*pi*10.5*n/256)+0.01 cos(2*pi*16*n/256));, %BLACKMAN WINDOW WITH NOISE (f1 =1 0.5fs/N
S=s2+r; f2=16ts/N)
wi 1=abs(tft(S)); wb=(blackrnan(256));-
W1 =2O*Iogl O(wf 1/max(wf 1)); w4=wb, S
axis(1O 100 -80 0]): wt4=abs(ft(w4)).
subplot(221 )plot(n,W1 ),xlabel('k'),ylabel('Iog-mnag. of W4=2D*Iogl 0(wt4/max(wf 4));

transf .(dB)'),... subplot(223),plot(nW4),xlabel('k'),ylabel('Iog-maq of
title('Rect. Window (AWGN)Y) transf.(dB)'), .
gtext(t11=1 O.5bin 12=1 6bin'); title('Blackman window (AWGNY)'
gtext('SNR=-OdB'); gtext(fl=1O.5bin t2=l6bin');
pause gtext('SNR=OdB');,

pause

%TR;ANGLE WINDOW WITH NOISE (f11=1 0.5fs/N %KAISER WINDOW WITH NOISE (a=2)
f2=1 6fs/N) wk=(kaiser(256,pi2))';

rand('normal'): w5=wk.*S;
%s=(cos(2*pi *1 D.5*n/256)+cos(2*pi*1 6*n1256)); w15=abs(ftt(w5))-,
%sl =s+r; W5=20*logl O(w15/max(wf5));1
wt=(bartleft(256));, subplot(224),plot(n,W5),xlabel('k'),ylabel('Iog-mag. of
w2=wt. S; transf.(dB)'),..
wt2-abs(ffl(w2)); title('Kaiser-Bessel window (AWGN)')
W2=20*logl O(wf2fmax(wf 2));, gtext('a=2')
%subplot(21 1),plot(n,W2).xlabel('k'),ylabel('Iog-rmg. of gtext(f 1=10O5bin f2=1 6bin');,

transf.(dB)'), .. gtext('SNR=OdB');
%title('Triang. window (AWGN)') pause
%gtext('fl=10.5bin, f2=l6bin'):
%gtext('SNR=-OdB');
%pause %NON-CLASSICAL WINDOWS (LINEAR FM CHIRP

WINDOW)
%HAMMING WINDOW WITH NOISE(fl=1 05fs/N %AMPLITUDE SPECTRUM FOR 32 POINT LINEAR FM

f2=1 61s/N) CHIRP WINDOW
wh=(liamming(256))'-, clear
w3=wh.*S; clg
wf3=abs(fft(w3));, n--O:31;
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On=2*pi'n. *(n+l1V(32*2);- x2--exp(i*2*pi~n*0.328125)+r2-;
w--exp(i*On);- w2zx2.*w;
axis; w2f~abs(ftt(w2,1 28)):,
plot(w) W24O0Iogl O(w2f):
pause subplot(222),plot(f,W2),xlabel('Norrnialized frequency
wf=abs(fft(w,1 28))', Hz'), ylabel('Amplitude dB')...
W=2O*logl 0(wf); title('One signal at FM chirp window')
f=0: 1/127:1 - gtext('f=O.328125 Hz.')
axis([O 1 -30 20]); gtexl('SNR=20dB')
subplot(21 1 ),plot(f,W),xlabel ('NormalIized pause

frequency'), ylabelI('amplitude dB').... r3=1/(1 OA(1 8/20))*rand(n),.
tille('Amplitude spectrum for 32 point linear FM chirp x3-exp(i*2pi*n*0.328125)+r3-;

window') w3=x3.*w-
pause w3f~abs(t~t(w3, 128)):

W3=20* logi O(w3f)-,
%PHASE SPECTRUM FOR 32 POINT LINEAR FM CHIRP subplIot(223),p lot (fW3),xlabeli('Normal ized frequency

WINDOW Hz'),ylabel('Amplitude dB'),....
P=angle(tft(w));, title('One signal ai ýM chirp window')
fl-O0:1/31:1; gtext('f=O.328125 Hz,')
axis; gtext('SNR=1 8dB')
subpl ot(21 2), plot(fl 1 P), xlabel ('f requency'),ylabel('Phase pause

radians'),... r4=1I/(1OA (15/20))*rand(n),.
title('Phase spectrum for 32 point linear FM chirp window') x4=exp(i*2pi~n0.328125)+r4:,
pause w4=x4.*w;

w4f~abs(fft(w4,1 28)):
%SPECTRUM FOR ONE COMPLEX SINUSOID AT W4=20*Iog1O(w41);

t=0.328125 Hz subpl ot(224), pl ot(t,W4), xlabel ('Normal ized frequency
clg Hz'),ylabel('Amplitude dB').
rand('normal') title('One signal at FM chirp window')
rl =1/(J0A (30/20))*rand(n); gtext('f=O.328125 Hz.')
xl =exp(i*2*pi*nO0.3281 25)+rl; gtext('SNR=1 5dB')
wl=x1 *w; pause
wl f=abs(tft(wl, 1 28));l
axisa[O 1 -30 20]); %SPECTRUM FOR TWO SINUSOIDS AT fl10.328125 Hz,
Wi =20*loglO(wlI);, f2-0.3125 Hz
subplot(221 ).plot(t .W1),xlabel('Normalized frequency cig

Hz').ylabel('Amplitude dB'),... rand('normal')
title('One signal at FM chirp window') r21=1/(10A(30/20))*rand(n);
gtext('f=0.328125 Hz.') x1=(exp(i*2*pirn*.328125)+exp(i*2*pi*nO0.3125))+r21;
glext('SNR=3OdB') wl=xl .*w;
pause wlf=abs(ftt(wl .128));-
r2=i /(1A A(20/20))*rand(n);, Wi =20*Iogl 0(wi f);
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axis([0 1 -30 301). gtext('SNR=1 0dB')
subplot(221 ),plol(t W ),xlabel('Normalized frequency pause

Hz'),ylabel('Amplitude dB')....
tille('Two signals at FM chirp window')
gtext(' I=0. 328125 Hz') %SPECTRUM FOR ONE SINUSOID AT t11=0 328125 Hz
gtext('f2=O.3125 Hz') USING RAISED COSINE WINDOW

gtext('SNR=3OdB') cig
pause rand('normal'),
r22=1 1(l OA (20/20))* rand(n): rs=1 /(1 A (30120))*rand(n).
x2=(exp(i*2pi~n0.3281 25)+exp(i*2pi~n0.31 25))+r22, x2=exp(i*2pi~n0 3281 25)+rs.
w2=x2.*w, wi =hamming(32)',
w2fzabs(tft(w2, 128)):. w3=x2 *w1,
W2=201Iog1 O(w2f). w3f=abs(fft(w3, 128)),
subpolo(222),plot(fW2),xlabel ('Normalized frequency W3=2O logi O(w3f),

Hz').ylabel('Amplitude dB'),. axis([0 1 -30 301):
title('Two signals at FM chirp window') subplot(21 1 )plot(f.W3). xlabel ('Norrnalized frequency
gtext('f 1 A0328125 Hz') Hz'),ylabeI('Amplitude dB'),
gtext('12=O.3125 Hz') title('Spectrum for one sinusoid using raised cosine

gtext('SNR=20dB') window')
pause gtext('f =0 328125 Hz')
r23= 1/(1 OA( 1 5/20))*rand(n);- glextC'SNR=3OdB')
x3=(exp(i*2*pi~n*0.3281 25)+exp(i*2pi~nO0.31 25))+r23, pause
w3=x3.*w;
w3f-abs(fft(w3,1 28)): %SPECTRUM FOR TWO SINUSOIDS Al f 1=0 328125 Hz,

W3=2O*Iogl O(w3t);, f2=0 3125 Hz USING RAISED
subplot(223),plot(l.W3),xlabel('Normalized frequency %COSINE WINDOW

Hz'),ylabel('Amplitude dB'),,, x3=(exp(i*2*pi~n0.328125)+exp(i*2pi~n*O 31 25))+rs,
title( Two signals at FM chirp window') w4=x3 wi:
gtext('f 1 =0.328125 Hz') w41=abs(ffl(w4.128)):
gtext('12=0.3125 Hz') W4=20*logi O(w4f):
gtext('SNR=1 5dB') subplot (212).plot (f ,W4).xlabel('Normalized frequency
pause Hz'),ylabel('Amplitude dB'),
r24=1 /(JOA(1O0/20))*rand(n), title('Spect rum for two sinusoids using raised cosine
x4=(exp(i*2*pi~n*0.3281 25)+exp(i*2pi~n0.3125))+r24. window')

w4=x4.*w; gtext(f11=0.-328125 Hz')
w4f=abs(fft(w4, 128));, gtext('f2=O.3125 Hz')
W4=20*Iog 1 (w4f), gtexf('SNR=30d8')
subplot(224),plot(f, W4),.xlabel ('Normalized frequency pause

Hz').ylabel('AmpI itude dB'),.,
I if e('Two signals at linear chirp window') %SPECTRUM FOR FREQUENCY STEP TIME WAVEFORMS

gtext('tl =0.328125 Hz') USING RAISED COSINE WINDOW

gtext('t2=O 3125 Hz') clear
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clg pause
n=1.32-,
rand('normal')
r=1 /(1OA (30/20))*rand(n): %ANALYSIS OF SNR FOR CLASSIC AND HIGH
0(n)=2*pi~n. *(n+ 1 )(32*2): RESOLUTION WINDOWS
F(n)=2*pi~n/32-, %NO NOISE CASE
O(n)=O(n)+F(n); %RECTANGLE WINDOW (fl=10.75ts/N ,f2zl11 25ts/N)
w=exp(i0O(n)): clear
wc=blackman(32)';, clg
x1=exp(i*2*pi*(0.15)*0.2): n-i0:31
x2zexp(i*2*pi(16:31 )0.4)-, s=(cos(2*p*10.75*n/32)+cos(2pi*I 1i.25*nI32)).
xu=[xl x21+r: wf=abs(ttt(s,128)):
wi =XU.wc: W=20* logl 1O(wflmax(wf));
wi I=abs(tft(wl .128)):, f=0:1/127:1-
WI =20*Iog1O(wl I), axis([0 0.5 -60 01):
1=0:1 /127:1 - subplot(221 )plot(tW),xlabel('Normal ized Ireq
axis(tO 1 -30 301): Hz.'),ylabel('Amplitude (dB)').
subplot(221 )plot(fW1),xlabel('Frequency title('RECTANGULAR WINDOW')

Hz'),ylabel('Amplitude dB')... gtext('NO NOISE')
title('Up freq. step (cony, window)') gtext('f 1=0.335937Hz.')
pause gtext('f2=0.351 562Hz.')
w2=xu. *w- pause
w21l=abs(ttt(w2,1 28)),
W2=20*Iogl 0(w2t): %HAMMING WINDOW (tl=1 0.75fs/N ,f2=1 1.25tsIN)
subplot(223),plot(f.W2),xlabel('Frequency wi h=(hamming(32))':

Hz'),ylabel('AmpI itude dB'),... wi =wlhI.*s;,
tiIle('Up treq.step (FM chirp window)') wfl=abs(tlt(w1,128)),;
pause Wi =20*Iogi 0(wtl/max(wfl ));
xd=[x2,xl I+r: subplot(222),plot(t,W1 ),xlabel('Normral ized I req
w3=xd.*wc-: Hz.'),ylabel('Aniplitude (dB)'),.
w3t=abs(fft(w3,1 28)):, tille('HAMMING WINDOW)
W3=20*Iog1 O(w3t);- glext('NO NOISE')
subp lot(222). plot(t,W3),xlabel('frequency gtext('f 1 =0.335937Hz.')

Hz'),ylabel('Amplitude dB'),... gtext('f2=0.351 562Hz.')
title('Down treq.step (cony, window)') pause
pause
w4=xd. *w; %LINEAR FM CHIRP WINDOW ONE COMPLEX SINUSOID
w4f=abs(ttt(w4.1 28)):, AT 1=0.328125(or 10.75/32)
W4.-20* logi 0(w41): %NO NOISE CASE
subplot(224),plot(f,W4),xlabel('Frequency n=0:31 -

Hz'),ylabel('Amplilude dB'),... On=2*pin.*(n41)/(32*2);-
title('Down treq. step (FM chirp window)') wc=exp(i*On);-



x=exp(i 2*pi n*10. 75/32);l gtext('f2=0. 351 562Hz.')
w2=x. *wc; pause
w12=abs(tft(w2, 128)); Z=18;
W2=20*Ilogl O(wf2/max(wt2)); r=1/(1A O(z120))*rand(n);,
ft-0: 1/127:-1 ; sr=s+f;
axis([0 1 -60 01); wfr=abs(ttt(sr,1 28));
subplot(223), pl ot(t,W2), xlabel ('Normalized I req, Wr=20*Iogl 0(wfr/max(wfr));

Hz. '),ylabel('Amplitude (0R)'),... subplot(222),plot(f,Wr),xlabel('Normalized freq.
tille('One signal at FM CHIRP WINDOW) Hz.'),ylabel('Amplitude (0)'),-..
gtext('NO NOISE') title('RECTANGUL.AR WINDOW')
gtext('i=O.335937Hz.') gtext('SNR=l 8dB')
pause pause
% FM CHIRP WINDOW 2 COMPLEX SINUSOIDS AT Z=9;

11=0.335937, t2=0.351 562(or 11.25/32) r=l/(1 OA (z/20))*rand(n);
x1 =x+exp(i*2*pi*n~l 1.25/32); sr=s+r;
w3=xl .wc;. wlr=abs(tft(sr,1 28));,
wt3=abs(ttt(w3,1 28)); Wr=2Oilogl 0(wfr/max(wtr));,
W3=20*Iog' 0(wf3/rnax(wt3)): subplot(223),plot(f.Wr).xlabel('Normialized freq.
subplot (224),plot(f, W3),xlabel1('Normal ized treq. Hz '),ylabel('Amplitude (dB)'),....

Hz.'),ylabel('Amplitude (dB)').... title ('RECTANGULAR WINDOW')
title('Two signals at FM CHIRP WINDOW') gtext('SNR=9dB')
gtext('NO NOISE') pause
gtext('fl =O.335937Hz.') z=0O;
gtext('12=O.351 562Hz.') r=1 /(10A (z/20))*rand(n),
pause sr=s+r;

wI r=abs(fft(sr,1 28));
%SIGNAL TO NOISE RATIO (SNR) ANALYSIS Wr=20*IoglO0(wfr/max(wfr));,
clg subpIot(224),plot(tWr),xIabeI ('Normalized treqt.
n=0:31; Hz.'),ylabel (Amp[litude (dB)'),....
rand('normal'); tilie('RECTANGULAR WINDOW')
z=301- %ievel of SNR (dB) gtext('SNR=-OdB')
r 1 /(1 DA (z120))*rand(n); pause
%RECTANGULAR WINDOW (AWGN)
sr=s+r;, %HAMMING WINDOW (AWGN)
wtr=abs~ftl(sr.1 28));, clg
Wr=20*logl O(wfr/max(wtr)); z=30;
axis([O 0.5 -60 0]); r=1/(1 DA (z120))*rand(n),;
subpI ot(22 1 ), pl ot(fWr),xiabel ('Normalized f req. sr=s+r;

Hz.'),ylabel ('Amplitude (dB)').... wh=wl h.*sr;,
title('RECTANGUI..AR WINDOW') wth-abs(Ift(wh,1 28));
gtext('SNR=30dB') Wh=20*loglO(wfh/max(wfh));
gtext('f 1=0.335937Hz.')
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subplot(221 ),plot(f,Wh),xlabel('Normalized treq, clg
Hz .),ylabel ('Amplitude (0B)').... n=O:31;

title('HAMMING WINDOW') rand('normal');
glexl('SNR=3OdB') z=3C;1 %level SNR
gtext('f1 =0.335937Hz.') r=l/( CA (z/20))*rand(n);-
gtex1('f2=0.351562Hz.') xr=x+r;
pause wclhwc. xr;
z=1 B. wici -abs(tft(wcl ,1 28))-,
r=1 1(1 OA (z/20))*rand(n); WC 1 =20* og1 0(wtcl /max(wfcl ));-
sr=s+r: %subplot(223),plot(tWCI),xlabeI('Normalized I req.
wh=wl h.*sr- Hz.'),ylabel('Amplitude (0B)'),...
wfh~~abs(fft(wth, 128)); %title('One signal FM CHIRP WINDOW')
Wh=20ifog1O(wfh/max(wfh)); %gtext('t=0.3281 25Hz')
subplot(222),plot(f,Wh).xlabe(('Normalized I req. %gtext('SNR=-3dB')

Hz '),ylabel('Amplitude (0B)').... %pause
title('HAMMING WINDOW') %FM CHIRP WINDOW (Two signals+AWGN)
gtext('SNR=1 8dB') clg
pause z=30;
Z=9, r=1/(1 OAQz20))*rand(n);
r=1/1(1 OA z120))*rand(n): xrl=xl +r;
sr=s+r; wc2=wc,*xr1;
wh=wl h.sr;, wtc2-abs(lft(wc2,1 28));-
wfh~abs(lff(wh,1 28)); WC2=20*Iog1 0(wfc2lmax(wtc2))-,
Wh=20*Iogl0(wfh/max(wfh)); axis(tO 1 -40 01);
subplot(223),plot(f.Wh),xlabel('Normalized f req. subpl ot(221 ),p lot(f,WC2).xlabel ('Norma Iized Ireq.

Hz.'),ylabel('Amplitude (0B)'),... Hz.'),ylabel('Amplitude (dB)'),....
title('HAMMING WINDOW') title('Two signals FM CHIRP WINDOW')
gtext('SNR=9d8') gtext('SNR=30dB')
pause gtext('f1=0.335937Hz.')
z=0; gtext('f2--O.351 562Hz.')
r=11(1 OA (z120))*rand(n); pause
sr=s+r; z=18;
wh~w1 h.*sr-, r=1/(1 OA (z120))*rand(n);
wfh~abs(ffl(wh, 128)); xrl =xl ~r;
Wh=20*Iogl D(wfh/miax(wfh)); wc2=wc.*xrl;
subplot(224),plot(f,Wh),xlabel('Normalized freq. wfc2=abs(fft(wc2,128));-

Hz.'),ylabel('Amplitude (0B)'),... WC2=20*IoglO(wfc2/max(wfc2)):
title('HAMMING WINDOW') subpl ot(222),plIot(f,WC2),xlabel ('NormalIized f req.

pause title(Two signals FM CHIRP WINDOW)
gtext('SNR~1 8dB')

%FM CHIRP WINDOW (One signal+AWGN) %glext('11=0.328125Hz'f)
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%gtext('f2=O.359375Hz') subp lot(21 2), plot(s I ),xlabel('n), ylabel('s 1'), title('Damped

pause Sinusoid')

z=9: pause

xr1~x1+r; %DAMPED SINUSOID SIGNAL WITH HIGH RESOLUTION

wc2=wc. *xrl; WINDOW
wfc2-abs(fft(wc2, 128)); clear

WC2=2Oifog1I O(wfc2/max(wfc2)); clg
subplot(223),pIot(tWC2),xlabel('Normalized freq. n=0.31;

Hz.'),ylabel('Amplitude (dB)'),.. On=2*pi~n.*(n+1 )/(32*2);-

title('Two signials FM CHIRP WINDOW') w=exp(i*On);

gtext('SNR=9d8') ,'and('normal')

%gtext('f1=0.328125Hz') r~j/(10A (30/20))*rand(fl);
%gtext('t2=0.359375Hz') x--exp(i*2*pi*n*0.3281 25).*exp(-n/31 )+r;,

pause wl~x.*w;
Z=O4 wi f=abs(tft(w1,128));
r=1/(1A O(z120))*rand(n); Wi =20*log10(w1 f);

wc2=wc.*xr1; axis(tO 1 -30 301);

wfc2=abs(tftt(wc2,128)); subplot(221 ).plot(f ,W1 ),xlabel('Normalized

WC2=20*logl 0(wtc2/max(wfc2)); frequency'),ylabel ('amplitude dB'),...

subpl ot(224),pIot(fWC2),xlabel ('Normalized f req. title('f--O328125 Time constant=1')

Hz.')ylabel('Amplitude (dB)'),... pause

title('Two signals FM CHIRP WINDOW')
gtext('SNR=-OdB') %TIME CONSTANT =1/2

%gtext('f1=0.328125Hz') x--exp(i*2*pifl*0.3281 25).*exp(-2*n/(31 ))+r;

%gtext('t2=0.359375Hz') w2=x.*w;

pause w2f=abs(Ift(w2,1 28));
W2=20*Iogl D(w21);
subplot(222),plot(f,W2),xlabel('Nolflalized

%SUIM OF TWO SINUSOIDS SHOWING EXP. BEHAIVOR frequency'),ylabel('amplitude dB')~...

clear title('f=0.3281 25 Time constant=1 /2')

clg pause
s=cos(2*pi*(0:.1 :31 )*1 0/31 )+cos(2*pi*(0:.1 :31 )*10.5/31);
axis, %T!ME CONSTANT =1/3

subplot(21 1 )plot(s),xlabel('fl'),ylabel('s').title('Sum of two x=exp(i*2*pi*n*0.3281 25).*exp(-3*n/(31 ))+r;

sinusoids') w3=x.*w;

pause w3f=abs(fht(w3,1 28));
W3=20*logl 0(w3f);

%DAMPED SINUSOID subplot(223),plot(fW3),xlabeI ('NormTalized

ni=0:1:31: frequency').ylabel('amplitude dB'),...

s1 ~exp(-n/16).*cos(2*pi*fl*0. 32Bl 2 5);, title('f4.3281 25 Time constant=1 /3')
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pause w8--x4.*w;,
w8l=abs(fft(w8,1 28)).

%TIME CONSTANT =1/4 W8=2O*Iog1O(w8f);
x--exp(i*2*pi~nO.328125). exp(-4*n/(31 ))+r; subplof(224),plot(t,W8),xlabel('Norrnalized
%x--exp(i*2*pi~n*O.5).*exp(-n/(4*31 )); trequency'),ylabei('Amplitude dB)...
w4=x. *w title( Iwo damped signals Tc=-1/4')
w4f-abs~lI(w4,1 28)); pause
W4=20*Iog1O(w4t);
subpl ot(224), pl ot(f,W4),xlabelQ(Normalized

trequenry'),ylabel('Amplitude d8')...
title('f=0.3281 25 Time constant=1/4')
pause %MEAN VARIANCE AND DC POINT OF CHIRP WINDOW

clear
%TWO DAMPED SINUSOID SIGNALS (11=0.3125Hz clg

f2=-O 3281 25Hz) n--0:31;
clg On=2*pi*n.*(n+1 )/(32*2);
x2l 'z(exp(i*2*pi*n*0.31 25)+exp(i*2*pi*n*0.3281 25))+r: w=exp(i*On):
xl =x21.*exp(-n/31); wt=abs(fft(w, 128));
w5=xl.*W; pause
w5f=abs~fft(w5,1 28));, wi =wf(1 2:64)
W5=20*Iogl O(w5f); pause
subpl ot(221 ), pl ot(f,W5), xlabel (Normalized f-0: 1/127-:1;

I requency'),ylabel ('AmplIitude dB').... axis([O 0.5 0 81);
title('two damped signals TO=') subplot(221 ), pl ot(f,wt),xlabel ('Frequency'), ylabel ('Magn itud
pause e')
x2=x2 .*exp(-2*n/31); title(TRANSFORM OF CHIRP WINDOW')
w6=x2.*w; gtext('Figure 4.17')
w6f=abs(ftt(w6,1 28)); pause
W6=20*loglO(w6f): wo--Wf(1)
subplot(222), pl ot(f,W6),xlabel ('Normalized m=mean(wl)

frequency'),ylabel('Amplitude dB'),... sd=std(wl)
title('two damped signals Tc=1/2') x=sum(wl )153
pause pause
x3=x2 .*exp(-3*n/31):
w7=x3.*w:
w7f=abs(ffl(w7,1 28));
W7=20OIoglO(wlf);
subplot(223),plot(t,W7),xlabel('Normalized

frequency'),ylabel(fAmplitude dB'),....
title('two damped signals Tc=1/3')
pause
x4=x2 .*exp(-4*n/31);
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